definition::
specific:
· whole is an-entity with parts (= internal-attributes).
generic:
·
part:
·
whole:
· parts make-up a-whole.
description::
· whole-entity is an-entity that has parts (= attribute we consider internal).
· collection is a-whole without relations and 'parts'.
· system is a-whole with relations and 'parts'.
=== all!~noun:
· stxEngl: We counted all.
=== all!~adjective:
· stxEngl: All students must attend the meeting.
=== all!~adverb:
· stxEngl: It is all right. (attribute of adjective)
=== quán..dōu-全..都!=whole:entire:
· stxZhon: 我们 全 家 都 去 过 北京 。 :: Wǒmen quán jiā dōu qù guo Běijīng. != Our entire family has been to Beijing.
· stxZhon: 大家 全 都 到 了。 :: Dàjiā quán dōu dào le. != Everybody has arrived.
· stxZhon: 他们 全 都 没 去 。 :: Tāmen quán dōu méi qù. != None of them went.
· stxZhon: 他 说 得 有 道理 ,但 我 不 全 都 同意 。 :: Tā shuō de yǒu dàolǐ, dàn wǒ bù quán dōu tóngyì. != He has a point, but I don't agree with all of it.
name::
* McsEngl.McsCor000008.last.html//dirCor//dirMcs!⇒whole,
* McsEngl.dirMcs/dirCor/McsCor000008.last.html!⇒whole,
* McsEngl.adjeEngl.all!=whole,
* McsEngl.adjeEngl.entire!=whole,
* McsEngl.adveEngl.all!=whole,
* McsEngl.adveEngl.altogether!=whole,
* McsEngl.adveEngl.completly!=whole,
* McsEngl.adveEngl.entirely!=whole,
* McsEngl.adveEngl.totally!=whole,
* McsEngl.adveEngl.wholly!=whole,
* McsEngl.all!~adjeEngl!=whole,
* McsEngl.all!~adveEngl!=whole,
* McsEngl.altogether!~adveEngl!=whole,
* McsEngl.completly!~adveEngl!=whole,
* McsEngl.entire!~adjeEngl!=whole,
* McsEngl.entirely!~adveEngl!=whole,
* McsEngl.entity.whole!⇒whole,
* McsEngl.holonym!=whole,
* McsEngl.totally!~adveEngl!=whole,
* McsEngl.whole,
* McsEngl.whole!=McsCor000008,
* McsEngl.whole!=whole-entity!⇒whole,
* McsEngl.whole-entity!⇒whole,
* McsEngl.whole-of-part!=part//whole,
* McsEngl.wholly!~adveEngl!=whole,
====== langoSinago:
* McsSngo.o-co!=whole,
* McsSngo.co!=whole,
====== langoChinese:
* McsZhon.quán..dōu-全..都!=whole:entire,
* McsZhon.全..都-quán..dōu!=whole:entire,
* McsZhon.zhěnggè-整个!=whole,
* McsZhon.整个-zhěnggè!=whole,
====== langoEsperanto:
* McsEspo.tuto!=whole,
====== langoGreek:
* McsEngl.adjeElln.ολός!-ος-η-ο!=whole,
* McsElln.ολός!-ος-η-ο!~adjeElln!=whole,
* McsElln.ολότητα!η!=whole,
====== langoTurkish:
* McsTurk.tüm!=whole,
name::
* McsEngl.whole'01_attribute,
* McsEngl.whole'attribute,
description::
· part-of-whole is an-attribute we consider internal.
name::
* McsEngl.meronym!=part,
* McsEngl.internal-attribute--of-whole,
* McsEngl.part,
* McsEngl.part-of-whole,
* McsEngl.part//whole,
* McsEngl.whole'01_part,
* McsEngl.whole's-part,
* McsEngl.whole/part,
====== langoSinago:
* McsSngo.jo!=part,
====== langoChinese:
* McsZhon.bùfèn-部分!=part,
* McsZhon.部分-bùfèn!=part,
====== langoEsperanto:
* McsEspo.parto!=part,
====== langoGreek:
* McsElln.μέρος!το!=part,
====== langoTurkish:
* McsTurk.bölüm!=part,
description::
· whole-part--relation is the-sequencedNo-relation between a-whole[a] and a-part of it[a].
name::
* McsEngl.whole'03_undirected-part-relation!⇒rlnWholePartU,
* McsEngl.whole'part-relation-undirected!⇒rlnWholePartU,
* McsEngl.part-whole-relation-undirected!⇒rlnWholePartU,
* McsEngl.relation.part-whole!⇒rlnWholePartU,
* McsEngl.relation.whole-part!⇒rlnWholePartU,
* McsEngl.rlnWholePartU,
* McsEngl.undirected---whole-part--relation!⇒rlnWholePartU,
* McsEngl.whole-part-relation-undirected!⇒rlnWholePartU,
====== langoSinago:
* McsSngo.ro-co-jo!=rlnWholePartU,
====== langoGreek:
* McsElln.σχέση-όλου-μέρους!=rlnWholePartU,
description::
* lagSngo:
· whole/part,
· part//whole,
name::
* McsEngl.namingA.part-whole,
* McsEngl.namingA.whole-part,
description::
· part-relation is the-sequenced-relation between a-whole[a] and a-part of it[a].
=== consist!~verbEnglA1!=rlnWholePart:
· stxEngl: _stxSbj:[a family] _stxVrb:{consists} _stsSbjc[(of) father, mother and children].
name::
* McsEngl.meronymy!⇒rlnWholePart,
* McsEngl.part-relation!⇒rlnWholePart,
* McsEngl.relation.part!⇒rlnWholePart,
* McsEngl.rlnWholePart,
* McsEngl.whole-part--sequenced-relation!⇒rlnWholePart,
* McsEngl.whole/part!⇒rlnWholePart,
* McsEngl.consist!~verbEnglA1!=rlnWholePart,
====== langoSinago:
* McsSngo.ro-co-jo!=rlnWholePart,
* McsSngo.ja!~conjSngo!=rlnWholePart,
====== langoGreek:
* McsElln.σχέση-μέρους!=rlnWholePart,
description::
· whole-relation is the-sequenced-relation between a-part and its whole.
* English:
· stxEngl: whole of part.
* Greek:
_txtEll: το-όλο μέρους.
name::
* McsEngl.holonymy!⇒rlnPartWhole,
* McsEngl.part-whole--sequenced-relation!⇒rlnPartWhole,
* McsEngl.part//whole!⇒rlnPartWhole,
* McsEngl.relation.whole!⇒rlnPartWhole,
* McsEngl.rlnPartWhole,
* McsEngl.whole-relation!⇒rlnPartWhole,
====== langoSinago:
* McsSngo.ro-jo-co!=rlnPartWhole,
* McsSngo.ca!~conjSngo!=rlnPartWhole,
====== langoGreek:
* McsElln.σχέση-όλου!=rlnPartWhole,
description::
· environment-of-whole[a] is any attribute of it[a] which is-not part.
· environment is any wholeNo, partNo attribute.
name::
* McsEngl.whole'04_partNo!⇒environment,
* McsEngl.environment,
* McsEngl.environment!=PartNo,
* environment'(wholeNoPartNo)!⇒environment,
* McsEngl.environment-of-whole!⇒environment,
* partNoWholeNo!⇒environment,
* wholeNoPartNo!⇒environment,
* McsEngl.whole'environment!⇒environment,
* McsEngl.whole'partNo!⇒environment,
====== langoGreek:
* McsElln.περιβάλλον-ολότητας!=environment,
name::
* McsEngl.whole'06_structure,
* McsEngl.whole'structure,
name::
* McsEngl.whole'08_evoluting,
* McsEngl.evoluting-of-whole,
* McsEngl.whole'evoluting,
{2019-10-22}::
=== McsHitp-creation:
· creation of current concept.
name::
* McsEngl.whole'whole-part-tree,
whole-tree-of-::
* whole,
* Sympan,
name::
* McsEngl.whole'generic-specific-tree,
generic-tree-of-::
* whole, wholeNo,
* entity,
description::
· collection is a-whole-entity without PART structure.
name::
* McsEngl.whole.001-collection!⇒collection,
* McsEngl.whole.collection-001!⇒collection,
* McsEngl.wholeCollection!⇒collection,
* McsEngl.collection,
====== langoSinago:
* McsSngo.co-kolekto!=collection,
====== langoGreek:
* McsElln.συλλογή!=collection,
description::
· element-of-collection is any part of it.
name::
* McsEngl.collection'01_element,
* McsEngl.collection'element,
* McsEngl.collection'member,
* McsEngl.collection'part,
* McsEngl.element-of-collection,
* McsEngl.member-of-collection,
* McsEngl.part-of-collection,
====== langoSinago:
* McsSngo.jo-a-kolekto,
====== langoGreek:
* McsElln.μέλος-συλλογής,
* McsElln.στοιχείο-συλλογής,
====== langoTurkish:
* McsTurk.koleksiyon-öğesi!=element-of-collection,
* McsTurk.koleksiyon-üyesi!=member-of-collection,
description::
· duplicate-collection is a-collection WITH duplicate elements.
name::
* McsEngl.collection.duplicate,
* McsEngl.duplicate-collection,
description::
· set is a-collection WITHOUT duplicate elements.
name::
* McsEngl.collection.duplicateNo,
* McsEngl.collection.set,
* McsEngl.set,
====== langoSinago:
* McsSngo.seto!=set,
====== langoChinese:
* McsZhon.jí-集!=set,
* McsZhon.集-jí!=set,
====== langoGreek:
* McsElln.σύνολο!το!=set,
====== langoTurkish:
* McsTurk.küme!=set,
description::
* union,
* intersection,
name::
* McsEngl.set'doing,
* McsEngl.set'operation,
description::
"Two sets can be "added" together. The union of A and B, denoted by A ∪ B, is the set of all things that are members of either A or B.
Examples:
- {1, 2} ∪ {1, 2} = {1, 2}.
- {1, 2} ∪ {2, 3} = {1, 2, 3}.
- {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}
Some basic properties of unions:
- A ∪ B = B ∪ A.
- A ∪ (B ∪ C) = (A ∪ B) ∪ C.
- A ⊆ (A ∪ B).
- A ∪ A = A.
- A ∪ ∅ = A.
- A ⊆ B if and only if A ∪ B = B."
[{1, 2} https://en.wikipedia.org/wiki/Set_(mathematics)#Unions]
name::
* McsEngl.set'doing.union,
* McsEngl.set'union,
* McsEngl.union-doing-of-sets,
description::
"A new set can also be constructed by determining which members two sets have "in common". The intersection of A and B, denoted by A ∩ B, is the set of all things that are members of both A and B. If A ∩ B = ∅, then A and B are said to be disjoint.
The intersection of A and B, denoted A ∩ B.
Examples:
- ∩ {1, 2} = {1, 2}.
- {1, 2} ∩ {2, 3} = {2}.
- {1, 2} ∩ {3, 4} = ∅.
Some basic properties of intersections:
- A ∩ B = B ∩ A.
- A ∩ (B ∩ C) = (A ∩ B) ∩ C.
- A ∩ B ⊆ A.
- A ∩ A = A.
- A ∩ ∅ = ∅.
- A ⊆ B if and only if A ∩ B = A."
[{2019-10-22} https://en.wikipedia.org/wiki/Set_(mathematics)#Intersections]
name::
* McsEngl.intersection-doing-of-sets,
* McsEngl.set'doing.intersection,
* McsEngl.set'intersection,
description::
· a-material-body which is a-collection of material-bodies.
name::
* McsEngl.bodyMtr.collection,
* McsEngl.collection.bodyMtr,
* McsEngl.collection-material-body,
description::
· body-whole it is a-whole which is also a-body-(an-indepedent-entity).
name::
* McsEngl.body-whole,
* McsEngl.whole.003-body,
* McsEngl.whole.body,
description::
· bodyNo-whole it is a-whole which is also a-bodyNo-(a-NON-indepedent-entity).
this webpage was-visited times since
page-wholepath: synagonism.net / worldviewSngo / dirCor / whole
SEARCH::
· this page uses 'locator-names', names that when you find them, you find the-LOCATION of the-concept they denote.
⊛ GLOBAL-SEARCH:
· clicking on the-green-BAR of a-page you have access to the-global--locator-names of my-site.
· use the-prefix 'whole' for sensorial-concepts related to current concept 'whole-entity'.
⊛ LOCAL-SEARCH:
· TYPE CTRL+F "McsLag4.words-of-concept's-name", to go to the-LOCATION of the-concept.
· a-preview of the-description of a-global-name makes reading fast.
webpage-versions::
• version.last.dynamic: McsCor000008.last.html,
• version.1-0-0.2021-04-06: (0-43) ../../dirMiwMcs/dirCor/filMcsWhl.1-0-0.2021-04-06.html,
• version.0-1-0.2019-10-22 draft creation,