whole-entity sensorial-concept-Mcs
(whole)

McsHitp-creation:: {2019-10-22}

overview of whole

definition::
specific:
· whole is an-entity with parts (= internal-attributes).


generic:
·


part:
·


whole:
· parts make-up a-whole.

description::
· whole-entity is an-entity that has parts (= attribute we consider internal).
· collection is a-whole without relations and 'parts'.
· system is a-whole with relations and 'parts'

name::
* Mcs.filMcsWhl.last.html!⇒whole,
* Mcs.dirCor/filMcsWhl.last.html!⇒whole,
* Mcs.whole,
* Mcs.whole-entity!⇒whole,
* Mcs.whole'(whole-entity)!⇒whole,
====== langoKomo:
* McsKmo.o-co!=whole-entity,
* McsKmo.co!=whole-entity,

part of whole

description::
· part-of-whole is its attributes we consider internal.

name::
* Mcs.PART,
* Mcs.internal-attribute--of-whole,
* Mcs.part-of-whole,
* Mcs.whole'part,
====== langoKomo:
* McsKmo.jo!=part,

whole-part--relation

description::
· whole-part--relation is the-sequencedNo-relation between a-whole[a] and a-part of it[a].

name::
* Mcs.part-whole--relation,
* Mcs.relation.part-whole,
* Mcs.relation.whole-part,
* Mcs.undirected---whole-part--relation,
* Mcs.whole-part--relation,
====== langoKomo:
* McsKmo.ro-co-jo!=relation.whole-part,
====== langoGreek:
* McsEll.σχέση-όλου-μέρους!=relation.whole-part,

part-relation

description::
· part-relation is the-sequenced-relation between a-whole[a] and a-part of it[a].

name::
* Mcs.part-relation,
* Mcs.relation.part,
* Mcs.consist!~verbEngA1,
====== langoKomo:
* McsKmo.ro-jo!=relation.part,
* McsKmo.ja!~conjKmo!=relation.part,
====== langoGreek:
* McsEll.σχέση-μέρους!=relation.part,

syntax of part-relation

description::
* English:
_txtEng: _stxSbj:(a family) _stxVerb(consists) _stsSbjc(of father, mother and children).

name::
* Mcs.part-relation'syntax,

whole-relation

description::
· whole-relation is the-sequenced-relation between a-part and its whole.

name::
* Mcs.relation.whole,
* Mcs.whole-relation,
====== langoKomo:
* McsKmo.ro-co!=relation.whole,
* McsKmo.ca!~conjKmo!=relation.whole,
====== langoGreek:
* McsEll.σχέση-όλου!=relation.whole,

syntax of whole-relation

description::
* English:
_txtEng: whole of part.
* Greek:
_txtEll: το-όλο μέρους.

name::
* Mcs.whole-relation'syntax,

resource of whole

name::
* Mcs.whole'resource,

addressWpg::
*

EVOLUTING of whole

name::
* Mcs.whole'evoluting,

{time.2019-10-22}::
=== McsHitp-creation:
· creation of current concept.

WHOLE-PART-TREE of whole

name::
* Mcs.whole'whole-part-tree,

whole-tree::
* whole,
* Sympan,

part-att::
* part,
* whole-part-relation,

GENERIC-SPECIFIC-TREE of whole

name::
* Mcs.whole'generic-specific-tree,

generic-tree::
* whole, wholeNo,
* entity,

whole.SPECIFIC

name::
* Mcs.whole.specific,

specific::
* collection,
* system,

whole.specifics-division.structure

description::
* collection,
* system,

name::
* Mcs.whole.specifics-division.structure,

whole.collection

description::
· collection is a-whole-entity without structure.

name::
* Mcs.collection,
* Mcs.whole.collection,
====== langoKomo:
* McsKmo.co-kolekto!=collection,
====== langoGreek:
* McsEll.συλλογή!=collection,

element of collection

description::
· element-of-collection is any part of it.

name::
* Mcs.collection'element,
* Mcs.collection'member,
* Mcs.element-of-collection,
====== langoKomo:
* McsKmo.jo-a-kolekto,
====== langoGreek:
* McsEll.μέλος-συλλογής,
* McsEll.στοιχείο-συλλογής,

collection.duplicate

description::
· duplicate-collection is a-collection WITH duplicate elements.

name::
* Mcs.collection.duplicate,
* Mcs.duplicate-collection,

collection.duplicateNo (set)

description::
· set is a-collection WITHOUT duplicate elements.

name::
* Mcs.collection.duplicateNo,
* Mcs.collection.set,
* Mcs.set,
====== langoKomo:
* McsKmo.seto!=set,

doing of set

description::
* union,
* intersection,

name::
* Mcs.set'doing,
* Mcs.set'operation,

set'doing.union

description::
"Two sets can be "added" together. The union of A and B, denoted by A ∪ B, is the set of all things that are members of either A or B.
Examples:
- {1, 2} ∪ {1, 2} = {1, 2}.
- {1, 2} ∪ {2, 3} = {1, 2, 3}.
- {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}
Some basic properties of unions:
- A ∪ B = B ∪ A.
- A ∪ (B ∪ C) = (A ∪ B) ∪ C.
- A ⊆ (A ∪ B).
- A ∪ A = A.
- A ∪ ∅ = A.
- A ⊆ B if and only if A ∪ B = B."
[https://en.wikipedia.org/wiki/Set_(mathematics)#Unions]

name::
* Mcs.set'union,
* Mcs.union-of-set,

set'doing.intersection

description::
"A new set can also be constructed by determining which members two sets have "in common". The intersection of A and B, denoted by A ∩ B, is the set of all things that are members of both A and B. If A ∩ B = ∅, then A and B are said to be disjoint.
The intersection of A and B, denoted A ∩ B.
Examples:
- {1, 2} ∩ {1, 2} = {1, 2}.
- {1, 2} ∩ {2, 3} = {2}.
- {1, 2} ∩ {3, 4} = ∅.
Some basic properties of intersections:
- A ∩ B = B ∩ A.
- A ∩ (B ∩ C) = (A ∩ B) ∩ C.
- A ∩ B ⊆ A.
- A ∩ A = A.
- A ∩ ∅ = ∅.
- A ⊆ B if and only if A ∩ B = A."
[https://en.wikipedia.org/wiki/Set_(mathematics)#Intersections]

name::
* Mcs.intersection-of-set,
* Mcs.set'intersection,

collection.material-body

description::
· a-material-body which is a-collection of material-bodies.

name::
* Mcs.bodyMtr.collection,
* Mcs.collection.bodyMtr,
* Mcs.collection-material-body,

whole.system

definition::
specific:
· system is a-whole-entity with structure (parts and part-relations).


generic:
·


part:
·


whole:
· nodes and node-relations make-up a-system.

description::
· system is a-whole-entity WITH structure (= parts AND part-relations).

name::
* Mcs.SYSTEM,
* Mcs.system,
* Mcs.whole.system,
====== langoKomo:
* McsKmo.co-sisto!=whole.system,
* McsKmo.sisto!=system,

node of system

description::
· a-system as a-whole, have parts which are-called 'nodes'.
· node could-be any entity, NOT only bodies.

name::
* Mcs.node-of-system,
* Mcs.system'node,
====== langoKomo:
* McsKmo.jo-ruo-a-sisto,
* McsKmo.sistos-jo-ruo,
====== langoGreek:
* McsEll.κόμβος-συστήματος,

node-relation of system

description::
· the-thing that differentiates a-system from a-collection, which both are wholes, is that a-system, except its parts, has AND relations among these parts.

name::
* Mcs.edge-of-system,
* Mcs.system'edge,
* Mcs.system'node-relation,
====== langoKomo:
* McsKmo.ro-jo--a-sisto,
* McsKmo.sistos-ro-jo,
====== langoGreek:
* McsEll.σχέση-κόμβου--συστήματος,

structure of system

description::
· structure of a-system is its nodes AND its node-relations.

name::
* Mcs.structure-of-system,
* Mcs.system'structure,
====== langoKomo:
* McsKmo.sistos-strukto!=system's-structure,
* McsKmo.strukto-a-sisto!=structure-of-system,
====== langoGreek:
* McsEll.δομή-συστήματος!=structure-of-system,

science of system

description::
· the-science on systems.
* systems-theory,

name::
* Mcs.science.system,
* Mcs.system'science,

systems-theory of system

description::
"Systems theory is the interdisciplinary study of systems. A system is a cohesive conglomeration of interrelated and interdependent parts that is either natural or man-made. Every system is delineated by its spatial and temporal boundaries, surrounded and influenced by its environment, described by its structure and purpose or nature and expressed in its functioning. In terms of its effects, a system can be more than the sum of its parts if it expresses synergy or emergent behavior. Changing one part of the system usually affects other parts and the whole system, with predictable patterns of behavior. For systems that are self-learning and self-adapting, the positive growth and adaptation depend upon how well the system is adjusted with its environment. Some systems function mainly to support other systems by aiding in the maintenance of the other system to prevent failure. The goal of systems theory is systematically discovering a system's dynamics, constraints, conditions and elucidating principles (purpose, measure, methods, tools, etc.) that can be discerned and applied to systems at every level of nesting, and in every field for achieving optimized equifinality.[1]
General systems theory is about broadly applicable concepts and principles, as opposed to concepts and principles applicable to one domain of knowledge. It distinguishes dynamic or active systems from static or passive systems. Active systems are activity structures or components that interact in behaviours and processes. Passive systems are structures and components that are being processed. E.g. a program is passive when it is a disc file and active when it runs in memory.[2] The field is related to systems thinking, machine logic and systems engineering."
[https://en.wikipedia.org/wiki/Systems_theory {2019-12-22}]

name::
* Mcs.systems-theory,

GENERIC of system

description::
* whole-entity,

name::
* Mcs.system'generic,

system.SPECIFIC

description::
* graph,
* sequence,
* tree-system,
===
* system.structure.complex,
* system.structure.medium,
* system.structure.simple,
===
* body-system,
* doing-system,
* relation-system,
===
* bio-system,
* bioNo-system,
===
* dynamic-system,
* dynamicNo-system,
===
* open-system,
* openNo-system,

name::
* Mcs.system.specific,

system.sequence

description::
· sequence is a-system, the-simplest one, with its parts arranged.

===
"(n) ordering, order, ordination (logical or comprehensible arrangement of separate elements) "we shall consider these questions in the inverse order of their presentation""
[http://wordnetweb.princeton.edu/perl/webwn?s=order]
"(n) series (similar things placed in order or happening one after another) "they were investigating a series of bank robberies""
[http://wordnetweb.princeton.edu/perl/webwn?s=series]
"(n) sequence (serial arrangement in which things follow in logical order or a recurrent pattern) "the sequence of names was alphabetical"; "he invented a technique to determine the sequence of base pairs in DNA""
[http://wordnetweb.princeton.edu/perl/webwn?s=sequence]

name::
* Mcs.list,
* Mcs.order-system,
* Mcs.ordering,
* Mcs.ordination,
* Mcs.sequence,
* Mcs.series,
* Mcs.system.ordered,
* Mcs.system.sequence,
====== langoKomo:
* McsKmo.siro!=sequence,
* McsKmo.sisto-siro!=sequence,
====== langoGreek:
* McsEll.ακολουθία,
* McsEll.λίστα,
* McsEll.σειρά,

element of sequence

description::
· element-of-sequence is any of its parts.

name::
* Mcs.sequence'element,
====== langoKomo:
* McsKmo.jo-ruo-a-sistoSiro!=sequence'element,
* McsKmo.saro!=sequence'element,
* McsKmo.sistosSiros-jo-ruo!=sequence'element,

abstract-order of sequence

description::
· abstract-order[a] of sequence is the-position of an-element WITHOUT the-element.
· it[a] is similar to abstract-quantity.

name::
* Mcs.abstract-order!⇒order,
* Mcs.order,
* Mcs.position-of-order!⇒order,
* Mcs.sequence'order!⇒order,
* Mcs.sequence'position!⇒order,
====== langoKomo:
* McsKmo.suro!=abstract-order,

ordinal-number of sequence

description::
· ordinal-number is a-name of an-order.

name::
* Mcs.ordinal-number,

order.SPECIFIC

description::
* first-1st,
* second-2nd,
* third-3rd,
* forth-4th,
* fifth-6th,
...

name::
* Mcs.order.specific,

order.1st

description::
·

name::
* Mcs.1st,
* Mcs.first,
====== langoKomo:
* McsKmo.suro-fo!=1st,
====== langoEsperanto:
* McsEpo.unua,
====== langoGreek:
* McsEll.πρώτος!~adjvEll:πρώτος-η-ο,

order.2nd

description::
"(n) second (following the first in an ordering or series) "he came in a close second""
[http://wordnetweb.princeton.edu/perl/webwn?s=second]

name::
* Mcs.2nd,
* Mcs.second,
====== langoKomo:
* McsKmo.suro-tho!=2nd,
====== langoEsperanto:
* McsEpo.dua,
====== langoGreek:
* McsEll.δεύτερος!~adjvEll:δεύτερος-η-ο,

order.3rd

description::
· abstract-order third.
"(n) third (following the second position in an ordering or series) "a distant third"; "he answered the first question willingly, the second reluctantly, and the third with resentment""
[http://wordnetweb.princeton.edu/perl/webwn?s=third]

name::
* Mcs.3rd,
* Mcs.third,
====== langoKomo:
* McsKmo.suro-to!=3rd,
====== langoEsperanto:
* McsEpo.tria,
====== langoGreek:
* McsEll.τρίτος!~adjvEll:τρίτος-η-ο,

order.4th

description::
· abstract-order fourth.

name::
* Mcs.4th,
* Mcs.fourth,
====== langoKomo:
* McsKmo.suro-so!=4th,
====== langoEsperanto:
* McsEpo.kvara,
====== langoGreek:
* McsEll.τέταρτος!~adjvEll:τέταρτος-η-ο,

order.5th

description::
· abstract-order fifth.

name::
* Mcs.5th,
* Mcs.fifth,
====== langoKomo:
* McsKmo.suro-co!=5th,
====== langoEsperanto:
* McsEpo.kvina,
====== langoGreek:
* McsEll.πέντε!~το,

order.6th

description::
· abstract-order six.
"(n) sixth (position six in a countable series of things)"
[http://wordnetweb.princeton.edu/perl/webwn?s=sixth]

name::
* Mcs.6th,
* Mcs.sixth,
====== langoKomo:
* McsKmo.suro-ko!=6th,
====== langoEsperanto:
* McsEpo.sesa,
====== langoGreek:
* McsEll.έκτος!~adjvEll:έκτος-η-ο,

order.7th

description::
· abstract-order seventh.

name::
* Mcs.7th,
* Mcs.seventh,
====== langoKomo:
* McsKmo.suro-ho!=7th,
====== langoEsperanto:
* McsEpo.sepa,
====== langoGreek:
* McsEll.εφτά!~το,

order.8th

description::
· abstract-order eighth.

name::
* Mcs.8th,
* Mcs.eighth,
====== langoKomo:
* McsKmo.suro-mo!=8th,
====== langoEsperanto:
* McsEpo.oka,
====== langoGreek:
* McsEll.όγδοος!~adjvEll:όγδοος-η-ο,

order.9th

description::
· abstract-order nine.

name::
* Mcs.9th,
* Mcs.ninth,
====== langoKomo:
* McsKmo.suro-ro!=9th,
====== langoEsperanto:
* McsEpo.naŭa,
====== langoGreek:
* McsEll.ένατος!~adjvEll:ένατος-η-ο,

order.10th

description::
· abstract-order ten.

name::
* Mcs.10th,
* Mcs.tenth,
====== langoKomo:
* McsKmo.suro-foPo!=10th,
====== langoEsperanto:
* McsEpo.deka,
====== langoGreek:
* McsEll.δέκατος!~adjvEll:δέκατος-η-ο,

order.11th

description::
·

name::
* Mcs.11th,
* Mcs.eleventh,
====== langoKomo:
* McsKmo.suro-foFo!=11th,
====== langoEsperanto:
* McsEpo.dekunua,
====== langoGreek:
* McsEll.ενδέκατος!~adjvEll:ενδέκατος-η-ο,

order.12th

description::
·

name::
* Mcs.12th,
* Mcs.twelfth,
====== langoKomo:
* McsKmo.suro-foTho!=12th,
====== langoEsperanto:
* McsEpo.dekdua,
====== langoGreek:
* McsEll.δωδέκατος!~adjvEll:δωδέκατος-η-ο,

order.13th

description::
"(n) thirteenth (position 13 in a countable series of things)"
[http://wordnetweb.princeton.edu/perl/webwn?s=thirteenth]

name::
* Mcs.13th,
* Mcs.thirteenth,
====== langoKomo:
* McsKmo.suro-foTho!=13th,
====== langoEsperanto:
* McsEpo.dektria,
====== langoGreek:
* McsEll.δέκατος-τρίτος!~adjvEll:δέκατος-τρίτος-η-ο,

order.20th

description::
·

name::
* Mcs.20th,
* Mcs.twentieth,
====== langoKomo:
* McsKmo.suro-thoPo!=20th,
====== langoEsperanto:
* McsEpo.dudeka,
====== langoGreek:
* McsEll.εικοσιοστός!~adjvEll:εικοσιοστός-η-ο,

order.21st

description::
·

name::
* Mcs.21st,
* Mcs.twentieth-first,
====== langoKomo:
* McsKmo.suro-thoPo!=21st,
====== langoEsperanto:
* McsEpo.dudeka-unua,
====== langoGreek:
* McsEll.εικοσιοστός-πρώτος!~adjvEll:εικοσιοστός-πρώτος-η-ο,

order.99th

description::
·

name::
* Mcs.99th,
* Mcs.ninetieth-ninth,
====== langoKomo:
* McsKmo.suro-roRo!=99th,
====== langoEsperanto:
* McsEpo.naŭdeka-naŭa,
====== langoGreek:
* McsEll.ενενηκοστός-ένατος!~adjvEll:ενενηκοστός-ένατος-η-ο,

order.100th

description::
·

name::
* Mcs.100th,
* Mcs.hundredth,
====== langoKomo:
* McsKmo.suro-foPoPo!=100th,
====== langoEsperanto:
* McsEpo.centa,
====== langoGreek:
* McsEll.εκατοστός!~adjvEll:εκατοστός-η-ο,

order.101st

description::
·

name::
* Mcs.101st,
* Mcs.one-hundredth-first,
====== langoKomo:
* McsKmo.suro-foPoFo!=101st,
====== langoEsperanto:
* McsEpo.centa-unua,
====== langoGreek:
* McsEll.εκατοστός-πρώτος!~adjvEll:εκατοστός-πρώτος-η-ο,

order.200th

description::
·

name::
* Mcs.200th,
* Mcs.two-hundredth,
====== langoKomo:
* McsKmo.suro-thoPoPo!=200th,
====== langoEsperanto:
* McsEpo.ducenta,
====== langoGreek:
* McsEll.διακοσιοστός!~adjvEll:διακοσιοστός-η-ο,

order.999th

description::
·

name::
* Mcs.999th,
* Mcs.nine-hundredth-ninetieth-ninth,
====== langoKomo:
* McsKmo.suro-roRoRo!=999th,
====== langoEsperanto:
* McsEpo.naŭcenta-naŭdeka-naŭa,
====== langoGreek:
* McsEll.εννιακοσιοστός-ενενηκοστός-ένατος!~adjvEll:ενιακοστός-ενενηκοστός-ένατος-η-ο,

order.1'000th (1000^1)

description::
·

name::
* Mcs.1'000th,
* Mcs.thousandth,
====== langoKomo:
* McsKmo.suro-Kilo1Fo!=1'000th,
====== langoEsperanto:
* McsEpo.mila,
====== langoGreek:
* McsEll.χιλιοστός!~adjvEll:χιλιοστός-η-ο,

order.1'001st

description::
·

name::
* Mcs.1001st,
* Mcs.one-thousandth-first,
====== langoKomo:
* McsKmo.suro-Kilo1Fo-Kilo0PoPoFo!=1'001st,
====== langoEsperanto:
* McsEpo.unu-mila-unua,
====== langoGreek:
* McsEll.χιλιοστός-πρώτος!~adjvEll:χιλιοστός-πρώτος-η-ο,

order.2000th

description::
·

name::
* Mcs.2000th,
* Mcs.two-thousandth,
====== langoKomo:
* McsKmo.suro-Kilo1Tho!=2'000th,
====== langoEsperanto:
* McsEpo.dumila,
====== langoGreek:
* McsEll.δις-χιλιοστός!~adjvEll:δις-χιλιοστός-η-ο,

order.999'999th

description::
·

name::
* Mcs.999'999th,
* Mcs.nine-hundredth-ninetieth-ninth-thousandth-nine-hundredth-ninetieth-ninth,
====== langoKomo:
* McsKmo.suro-Kilo1RoRoRo-Kilo0RoRoRo!=999'999th,
====== langoEsperanto:
* McsEpo.naŭcenta-naŭdeka-naŭa-mila-naŭcenta-naŭdeka-naŭa,
====== langoGreek:
* McsEll.εννιακοσιοστός-ενενηκοστός-ένατος-χιλιοστός-εννιακοσιοστός-ενενηκοστός-ένατος!~adjvEll:,

order.1'000'000th (1000^2)

description::
·

name::
* Mcs.1'000'000th,
* Mcs.millionth,
====== langoKomo:
* McsKmo.suro-Kilo2Fo!=1'000'000th,
====== langoEsperanto:
* McsEpo.unu-miliona,
====== langoGreek:
* McsEll.εκατομμυριοστός!~adjvEll:εκατομμυριοστός-η-ο,

order.2'000'000th

description::
·

name::
* Mcs.2'000'000th,
* Mcs.two-millionth,
====== langoKomo:
* McsKmo.suro-Kilo2Tho!=2'000'000th,
====== langoGreek:
====== langoEsperanto:
* McsEpo.du-miliona,
* McsEll.δύο-εκατομμυριοστός!~adjvEll:δύο-εκατομμυριοστός-η-ο,

order.1'000'000'000th (1000^3)

description::
·

name::
* Mcs.1'000'000'000th,
* Mcs.billionth,
====== langoKomo:
* McsKmo.suro-Kilo3Fo!=1'000'000'000th,
====== langoEsperanto:
* McsEpo.miliarda,
====== langoGreek:
* McsEll.δισεκατομμυριοστός!~adjvEll:δισεκατομμυριοστός-η-ο,

order.1'000'000'000'000th (1000^4)

description::
·

name::
* Mcs.1'000'000'000'000th,
* Mcs.trillionth,
====== langoKomo:
* McsKmo.suro-Kilo4Fo!=1'000'000'000'000th,
====== langoEsperanto:
* McsEpo.duiliona,
====== langoGreek:
* McsEll.τρισεκατομμυριοστός!~adjvEll:τρισεκατομμυριοστός-η-ο,

order.1'000'000'000'000'000th (1000^5)

description::
·

name::
* Mcs.1'000'000'000'000'000th,
* Mcs.quadrillionth,
====== langoKomo:
* McsKmo.suro-Kilo5Fo!=1'000'000'000'000'000th,
====== langoEsperanto:
* McsEpo.kvariliona,
====== langoGreek:
* McsEll.τετράκις-εκατομμυριοστός!~adjvEll:τετράκις-εκατομμυριοστός-η-ο,

order.relative

description::
· relative-order is order defined in relation to another order.

name::
* Mcs.order.relative,
* Mcs.relative-order,

order.relative.SPECIFIC

description::
* before-order,
* same-order,
* after-order,
===
* first-order,
* middle-order,
* last-order,

name::
* Mcs.order.relative.specific,

order.relative.first

description::
·

name::
* Mcs.first-order,
* Mcs.order.relative.first,
====== langoKomo:
* McsKmo.suro-fo,

order.relative.middle

description::
·

name::
* Mcs.middle-order,
* Mcs.order.relative.middle,
====== langoKomo:
* McsKmo.suro-mido,

order.relative.last

description::
·

name::
* Mcs.last-order,
* Mcs.order.relative.last,
====== langoKomo:
* McsKmo.suro-foUno,

order.relative.before-order

description::
· order, relative, before order.

name::
* Mcs.before-order,
* Mcs.order.relative.before-order,
====== langoKomo:
* McsKmo.suro-ana-ordo,

order.relative.same-order

description::
· order, relative, same order.

name::
* Mcs.same-order,
* Mcs.order.relative.same-order,
====== langoKomo:
* McsKmo.suro-ena-ordo,

order.relative.after-order

description::
· order, relative, after order.

name::
* Mcs.after-order,
* Mcs.order.relative.after-order,
====== langoKomo:
* McsKmo.suro-ina-ordo,

order.relativeNo

description::
· absolute-order is order NOT defined in relation to another order.

name::
* Mcs.absolute-order,
* Mcs.order.relativeNo,
* Mcs.relativeNo-order,

order-relation of sequence

description::
· order-relation is the-relation among the-elements of a-sequence.

name::
* Mcs.order-relation,
* Mcs.relation.order,
* Mcs.sequence'order-relation,

structure of sequence

description::
· sequence-structure is the-structure of a-sequence which is an-arrangement of its parts.

name::
* Mcs.sequence'structure,
* Mcs.sequence-structure,

system.tree

description::
· tree-system is a-system with a-tree-structure.

name::
* Mcs.hierarchy!⇒systemTree,
* Mcs.system.tree!⇒systemTree,
* Mcs.systemTree,
* Mcs.tree-system!⇒systemTree,
====== langoKomo:
* McsKmo.sisto-tro,
====== langoGreek:
* McsEll.δένδρου-σύστημα,
* McsEll.σύστημα-δένδρου,

node of tree-system

description::
· node of systemTree is its node-of-system, ie its parts as a-whole.

name::
* Mcs.node-of-systemTree,
* Mcs.systemTree'part,
* Mcs.systemTree'node,
* Mcs.systemTree'vertex,
* Mcs.tree-node,
====== langoKomo:
* McsKmo.jo-ruo-a-sistoTro,
* McsKmo.sistosTros-jo-ruo,
====== langoGreek:
* McsEll.κόμβος--συστήματος-δένδρου,

children-number of tree-node

description::
· children-number-of-node is the-number of its children.

name::
* Mcs.tree-node'children-number,
* Mcs.tree-node'degree,

level-number of tree-node

description::
· level-number--of--tree-node is a-number that denotes the-number of levels from the-top OR bottom level of the-tree.

name::
* Mcs.tree-node'level-number,

depth of tree-node

description::
· depth-of--tree-node[a] is the-number of levels from root including the-level of node[a].

name::
* Mcs.tree-node'depth,

height of tree-node

description::
· height-of--tree-node[a] is the-number of levels from bottom-level including the-level of node[a].

name::
* Mcs.tree-node'height,

path of tree-node

description::
· path-of-node[a] is the-sequence of nodes and edges from node[a] to root or the-opposite.

name::
* Mcs.tree-node'chain,
* Mcs.tree-node'path,

specific::
* generic-chain,
* whole-chain,

tree-node.SPECIFIC

description::
* anchestor-node,
* branch-node,
* child-node,
* decendant-node,
* leaf-node,
* leafNo-node,
* level-of-tree,
* neighbor-node,
* parent-node,
* root-node,
* sibling-node,
* subtree,

name::
* Mcs.tree-node.specific,

tree-node.root

description::
· root is the-most higher node.
· root-level--of-systemTree is the-most higher level-of-tree.
· root-level and root are same entities.

name::
* Mcs.tree-node.root,
* Mcs.root-level--of-systemTree,
* Mcs.root-node--of-systemTree,
* Mcs.top-level--of-systemTree,
* Mcs.systemTree'root-level,

tree-node.child

description::
· child-node of node[a] is a-node that directly follows node[a].

name::
* Mcs.child-node--of--tree-system,
* Mcs.tree-node.child,

tree-node.parent

description::
· parent-node of node[a] is a-node that directly preceds node[a].
· all nodes have one parent except root.

name::
* Mcs.parent-node--of--tree-system,
* Mcs.tree-node.parent,

tree-node.neighbor

description::
· neighbo-node of node[a] is any node which is parent or child of node[a].

name::
* Mcs.neighbor-node--of--tree-system,
* Mcs.tree-node.neighbor,

tree-node.leaf

description::
· leaf-node is a-node without children.

name::
* Mcs.leaf-node--of--tree-system,
* Mcs.tree-node.external,
* Mcs.tree-node.leaf,

tree-node.leafNo

description::
· leafNo-node is a-node with children.

name::
* Mcs.leafNo-node--of--tree-system,
* Mcs.tree-node.branch,
* Mcs.tree-node.internal,
* Mcs.tree-node.leafNo,

tree-node.ancestor

description::
· ancestor-node of node[a] is any node that preceds node[a].

name::
* Mcs.ancestor-node--of--tree-system,
* Mcs.tree-node.ancestor,

tree-node.descendant

description::
· descendant-node of node[a] is any node that follows node[a].

name::
* Mcs.descendant-node--of--tree-system,
* Mcs.tree-node.descendant,

tree-node.sibling

description::
· sibling-node of node[a] is any node which shares same parent with node[a].

name::
* Mcs.sibling-node--of--tree-system,
* Mcs.tree-node.sibling,

tree-node.level

description::
· level-of--tree-system is the-set of nodes with the-same level-number.

name::
* Mcs.level--of--tree-system!⇒tree-level,
* Mcs.systemTree'level!⇒tree-level,
* Mcs.tree-level,
* Mcs.tree-node.level!⇒tree-level,

width of tree-level

description::
· width-of--tree-level is the-number of nodes of a-level.

name::
* Mcs.tree-level'width,

tree-level.root (link)
tree-level.bottom

description::
· bottom-level is the-most lower level of a-tree.

name::
* Mcs.bottom-level--of-systemTree,
* Mcs.systemTree'bottom-level,
* Mcs.tree-level.bottom,

tree-node.subtree

description::
· subtree of tree[a] is a-node[b] of tree[a] and all its[b] descendants.

name::
* Mcs.subtree,
* Mcs.tree-node.subtree,

node-relation of tree-system

description::
· node-relation--of--tree-system is its node-relation--of-system.

name::
* Mcs.systemTree'edge,
* Mcs.systemTree'node-relation,

level (link) of tree-system

structure of tree-system

description::
· tree-structure is the-structure of a-tree-system which looks like an-inverted tree.

name::
* Mcs.systemTree'structure,
* Mcs.tree-structure,
* Mcs.tree-system'structure,
====== langoKomo:
* McsKmo.sistosTros-strukto,
* McsKmo.strukto-tro,
====== langoGreek:
* McsEll.δομή-δένδρου,

degree of tree-system

description::
· degree-of--tree-system is the-number of children of its root.

name::
* Mcs.systemTree'degree,

size of tree-system

description::
· size-of-tree-system is the-number of its nodes.

name::
* Mcs.systemTree'size,

breadth of tree-system

description::
· breadth-of--tree-system is the-number of its leaves.

name::
* Mcs.systemTree'breadth,

tree-system.SPECIFIC

description::
* generic-specific--tree,
* whole-part--tree,
===
* binary-tree,
* ordered-tree,

name::
* Mcs.tree-system.specific,

tree-system.binary

description::
· binary-tree is a-tree-system with 2 children at most.

name::
* Mcs.binary-tree,
* Mcs.tree-system.binary,

tree-system.ordered

description::
· ordered--tree-system is a-tree-system in which an-ordering is-specified for the-children of each node.

name::
* Mcs.ordered-systemTree,
* Mcs.systemTree.ordered,

tree-system.generic-specific

description::
· generic-specific--tree-system is a-tree-system with generic-specific node-relations.
===
"Taxonomy is the practice and science of classification. The word is also used as a count noun: a taxonomy, or taxonomic scheme, is a particular classification. The word finds its roots in the Greek language τάξις, taxis (meaning 'order', 'arrangement') and νόμος, nomos ('law' or 'science'). Originally, taxonomy referred only to the classification of organisms or a particular classification of organisms. In a wider, more general sense, it may refer to a classification of things or concepts, as well as to the principles underlying such a classification. Taxonomy is different from meronomy, which is dealing with the classification of parts of a whole.
Many taxonomies have a hierarchical structure, but this is not a requirement. Taxonomy uses taxonomic units, known as "taxa" (singular "taxon")."
[https://en.wikipedia.org/wiki/Taxonomy_(general) {2019-12-24}]

name::
* Mcs.generic-specific--tree-system!⇒treeGncspc,
* Mcs.generic-specific--tree!⇒treeGncspc,
* Mcs.treeGncspc,
* Mcs.tree-system.generic-specific!⇒treeGncspc,
* Mcs.taxonomy!⇒treeGncspc,

treeGncspc'taxon

description::
· taxon is a-node of a-generic-tree.

name::
* Mcs.taxa!~plural-of-taxon,
* Mcs.taxon,
* Mcs.treeGncspc'taxon,

treeGncspc.generic-tree--of-concept

description::
· generic-tree--of-concept is a-generic-specific-tree with the-concept on the-bottom-level.

name::
* Mcs.generic-tree--of-concept,
* Mcs.treeGncspc.generic-of-concept,

treeGncspc.specific-tree--of-concept

description::
· specific-tree--of-concept is a-generic-specific-tree with the-concept on the-root-level.

name::
* Mcs.specific-tree--of-concept,
* Mcs.treeGncspc.specific-of-concept,

tree-system.whole-part

description::
· part-whole--tree-system is a-tree-system with whole-part node-relations.
===
"A meronomy or partonomy is a type of hierarchy that deals with part–whole relationships, in contrast to a taxonomy whose categorisation is based on discrete sets. Accordingly, the unit of meronomical classification is meron, while the unit of taxonomical classification is taxon. These conceptual structures are used in linguistics and computer science, with applications in biology. The part–whole relationship is sometimes referred to as HAS-A, and corresponds to object composition in object-oriented programming.[1] The study of meronomy is known as mereology, and in linguistics a meronym is the name given to a constituent part of, the substance of, or a member of something. "X" is a meronym of "Y" if an X is a part of a Y.[2]"
[https://en.wikipedia.org/wiki/Meronomy {2019-12-24}]

name::
* Mcs.meronomy!⇒treeWhlprt,
* Mcs.part-whole--tree-system!⇒treeWhlprt,
* Mcs.partonomy!⇒treeWhlprt,
* Mcs.treeWhlprt,
* Mcs.tree-system.whole-part!⇒treeWhlprt,
* Mcs.whole-part--tree-system!⇒treeWhlprt,
* Mcs.whole-part--tree!⇒treeWhlprt,

treeWhlprt'meron

description::
· meron is a-node of a-whole-tree.

name::
* Mcs.meron,
* Mcs.treeWhlprt'meron,

system.graph

description::
· graph-system is a-system with nodes abstract-concepts, just dots.
===
"In mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line).[1] Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics."
[https://en.wikipedia.org/wiki/Graph_(discrete_mathematics) {2019-11-07}]

name::
* Mcs.abstract-system,
* Mcs.graph-system,
* Mcs.system.graph,
* Mcs.systemGraph,

system.body

description::
· body-system is a-system of bodies.

name::
* Mcs.body-system!⇒sysBody,
* Mcs.sysBody,
* Mcs.system.body!⇒sysBody,

node of sysBody

description::
· the-nodes of a-sysBody are bodies.

name::
* Mcs.sysBody'node,

system.material-body

description::
· a-material-body which is a-system of material-bodies.

name::
* Mcs.bodyMtr.system,
* Mcs.system.material-body,

system.complex (link)

system.complexMid

description::
·

name::
* Mcs.complexMid-system,
* Mcs.system.complexMid,

system.complexNo

description::
·

name::
* Mcs.complexNo-system,
* Mcs.system.complexNo,

system.dynamic (link)

system.dynamicNo

description::
· static-system is a-system without functings.

name::
* Mcs.dynamicNo-system,
* Mcs.static-system,
* Mcs.system.dynamicNo,

system.open

description::
· open-system is a-system with an-environment.

name::
* Mcs.open-system,
* Mcs.system.open,

system.openNo

description::
·

name::
* Mcs.openNo-system,
* Mcs.system.openNo,

whole.body

description::
· body-whole it is a-whole which is also a-body.

name::
* Mcs.body-whole,
* Mcs.whole.body,

meta-info

this page was-visited times since {2019-10-22}

page-wholepath: synagonism.net / Mcs-worldview / dirCor / whole

SEARCH::
· this page uses 'locator-names', names that when you find them, you find the-LOCATION of the-concept they denote.
GLOBAL-SEARCH:
· clicking on the-green-BAR of a-page you have access to the-global--locator-names of my-site.
· use the-prefix 'whole' for sensorial-concepts related to current concept 'whole-entity'.
LOCAL-SEARCH:
· TYPE CTRL+F "Mcs.words-of-concept's-name", to go to the-LOCATION of the-concept.
· a-preview of the-description of a-global-name makes reading fast.

footer::
• author: Kaseluris.Nikos.1959
• email:
 imgMail
• edit on github: https://github.com/synagonism/Mcsw/blob/master/dirCor/filMcsWhl.last.html,
• comments on Disqus,
• twitter: @synagonism,
• steemit: https://steemit.com/@synagonism,

webpage-versions::
• version.last.dynamic: filMcsWhl.last.html,
• version.0-1-0.2019-10-22 draft creation,

support (link)