description::
· elementary-chemical is a-pure chemical-body.
name::
* McsEngl.McsNtr000007.last.html//dirNtr//dirMcs!⇒chmElry,
* McsEngl.dirMcs/dirNtr/McsNtr000007.last.html!⇒chmElry,
* McsEngl.chmElr!⇒chmElry,
* McsEngl.chmElry!=McsNtr000007,
* McsEngl.chmElry!=chemical.elementary,
* McsEngl.elementary-chemical!⇒chmElry, {2020-02-27},
* McsEngl.elementary-substance!⇒chmElry, [IUPAC]
* McsEngl.chemical-element!⇒chmElry,
* McsEngl.chemical-elementary!⇒chmElry,
* McsEngl.substance-chemical-element!⇒chmElry,
====== langoSinago:
* McsSngo.kemo-fo!=chmElry,
====== langoGreek:
* McsElln.χημικό-στοιχείο!=chmElry,
descriptionLong::
chemical element
https://doi.org/10.1351/goldbook.C01022
1. A species of atoms; all atoms with the same number of protons in the atomic nucleus.
2. A pure chemical substance composed of atoms with the same number of protons in the atomic nucleus. Sometimes this concept is called the elementary substance as distinct from the chemical element as defined under 1, but mostly the term chemical element is used for both concepts.
Source: Red Book, 3rd ed., p. 35 [Terms] [Book]
Cite as: IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.
[http://goldbook.iupac.org/terms/view/C01022]
===
· chemical-element is A-CHEMICAL-SUBSTANCE which is-composed of same atoms.
===
"Elements, Chemical, substances that cannot be decomposed, or broken into more elementary substances, by ordinary chemical means. Elements were at one time believed to be the fundamental substances but are now known to consist of a number of different elementary particles: electrons, protons, and neutrons."
["Elements, Chemical," Microsoft(R) Encarta(R) 97 Encyclopedia. (c) 1993-1996 Microsoft Corporation. All rights reserved.]
description::
· symbol of a-chemical-element is a-short-name of it, usually of one or two letters.
description::
· in literature there is a-confusion in these two concepts (chemical-element and chemical-atom) because with the-(same)-name "chemical-element" they mean both even in the-(same)-sentence!
· in this site, with "chemical-element" ALWAYS I mean the-substance, NOT the-atom, BECAUSE the-atoms have no physical-attributes like boiling-point, melting-point, phase (solid, liquid, gas), density, ... which we associate with the-chemical-elements.
· only substances have physical-attributes.
· an-example in literature where 'element' means 'atom': https://chemistry.stackexchange.com/questions/59848/is-ozone-really-a-chemical-element.
name::
* McsEngl.Chmatm'relation-to--chemical-element,
* McsEngl.chmElry'relation-to--chemical-atom,
description::
"Τα μόρια των χημικών στοιχείων δεν αποτελούνται πάντοτε από τον ίδιο αριθμό ατόμων. Έτσι υπάρχουν στοιχεία μονοατομικά, όπως είναι τα ευγενή αέρια, π.χ. ήλιο (He), στοιχεία διατομικά, όπως είναι το οξυγόνο (O2), το υδρογόνο (Η2), ή ακόμα και τριατομικά, όπως είναι το όζον (O3)."
[http://digitalschool.minedu.gov.gr/modules/ebook/show.php/DSGL111/394/2612,10241/]
===
"The concept of allotropy was originally proposed in 1841 by the Swedish scientist Baron Jöns Jakob Berzelius (1779–1848).[2] The term is derived from Greek άλλοτροπἱα (allotropia), meaning 'variability, changeableness'.[3] After the acceptance of Avogadro's hypothesis in 1860, it was understood that elements could exist as polyatomic molecules, and two allotropes of oxygen were recognized as O2 and O3.[2] In the early 20th century, it was recognized that other cases such as carbon were due to differences in crystal structure.
By 1912, Ostwald noted that the allotropy of elements is just a special case of the phenomenon of polymorphism known for compounds, and proposed that the terms allotrope and allotropy be abandoned and replaced by polymorph and polymorphism.[2] Although many other chemists have repeated this advice, IUPAC and most chemistry texts still favour the usage of allotrope and allotropy for elements only.[4]"
[{2020-01-02} https://en.wikipedia.org/wiki/Allotropy]
name::
* McsEngl.chmElry'01_molecule,
* McsEngl.chmElry'att001-molecule,
* McsEngl.chmElry'molecule-att001,
description::
"Atomicity is defined as the total number of atoms that constitute a molecule."
[https://en.wikipedia.org/wiki/Atomicity_(chemistry)]
===
"Ο αριθμός που δείχνει από πόσα άτομα συγκροτείται το μόριο ενός στοιχείου ονομάζεται ατομικότητα στοιχείου
Η ατομικότητα του στοιχείου αναγράφεται ως δείκτης στο σύμβολο του στοιχείου. Παρακάτω δίνεται πίνακας με τις ατομικότητες των σημαντικότερων στοιχείων.
ΠΙΝΑΚΑΣ 1.3: Ατομικότητες στοιχείων
ΜΟΝΟΑΤΟΜΙΚΑ: Ευγενή αέρια: He, Ne, Ar, Kr, Xe, Rn, και τα μέταλλα σε κατάσταση ατμών.
Επίσης, στις χημικές εξισώσεις γράφονται σαν μονοατομικά τα στοιχεία C, S και P.
ΔΙΑΤΟΜΙΚΑ: Η2, O2, Ν2, F2, Cl2, Br2, I2.
ΤΡΙΑΤΟΜΙΚΑ: O3.
ΤΕΤΡΑΤΟΜΙΚΑ: Ρ4, As4, Sb4."
[http://digitalschool.minedu.gov.gr/modules/ebook/show.php/DSGL111/394/2612,10241/]
name::
* McsEngl.chmElry'att002-atomicity,
* McsEngl.chmElry'atomicity-att002,
* McsEngl.atomicity-of-chmElry,
====== langoGreek:
* McsElln.ατομικότητα-στοιχείου,
name::
* McsEngl.chmElry'02_atom,
* McsEngl.chmElry'att003-atom,
* McsEngl.chmElry'atom-att003,
description::
· the-individual atom from which this chmElry is-made-of.
description::
"mass number is the sum total of the protons plus the neutrons in the nucleus"
["Isotope," Microsoft(R) Encarta(R) 97 Encyclopedia. (c) 1993-1996 Microsoft Corporation. All rights reserved.]
name::
* McsEngl.chmElry'03_mass-number-A,
* McsEngl.chmElry'att004-mass-number-A,
* McsEngl.chmElry'mass-number-A-att004,
* McsEngl.chmElry'A,
* McsEngl.chmElry'atomic-mass-number,
* McsEngl.chmElry'nucleon-number,
description::
"The atomic number of an element is equal to the number of protons that defines the element.[18] For example, all carbon atoms contain 6 protons in their nucleus; so the atomic number of carbon is 6.[19] Carbon atoms may have different numbers of neutrons; atoms of the same element having different numbers of neutrons are known as isotopes of the element.[20]
The number of protons in the atomic nucleus also determines its electric charge, which in turn determines the number of electrons of the atom in its non-ionized state. The electrons are placed into atomic orbitals that determine the atom's various chemical properties. The number of neutrons in a nucleus usually has very little effect on an element's chemical properties (except in the case of hydrogen and deuterium). Thus, all carbon isotopes have nearly identical chemical properties because they all have six protons and six electrons, even though carbon atoms may differ in number of neutrons. It is for this reason that atomic number rather than mass number or atomic weight is considered the identifying characteristic of a chemical element.
The symbol for atomic number is Z."
[http://en.wikipedia.org/wiki/Chemical_element#Atomic_number]
name::
* McsEngl.chmElry'04_atomic-number-Z,
* McsEngl.chmElry'att005-atomic-number-Z,
* McsEngl.chmElry'atomic-number-Z-att005,
* McsEngl.chmElry'Z,
* McsEngl.chmElry'atomic-number,
* McsEngl.chmElry'proton-number,
description::
"Relative atomic mass (symbol: Ar) or atomic weight is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to the atomic mass constant. The atomic mass constant (symbol: mu) is defined as being 1/12 of the mass of a carbon-12 atom.[1][2] Since both quantities in the ratio are masses, the resulting value is dimensionless; hence the value is said to be relative.
For a single given sample, the relative atomic mass of a given element is the weighted arithmetic mean of the masses of the individual atoms (including their isotopes) that are present in the sample. This quantity can vary substantially between samples because the sample's origin (and therefore its radioactive history or diffusion history) may have produced unique combinations of isotopic abundances. For example, due to a different mixture of stable carbon-12 and carbon-13 isotopes, a sample of elemental carbon from volcanic methane will have a different relative atomic mass than one collected from plant or animal tissues.
The more common, and more specific quantity known as standard atomic weight (Ar, standard) is an application of the relative atomic mass values obtained from multiple different samples. It is sometimes interpreted as the expected range of the relative atomic mass values for the atoms of a given element from all terrestrial sources, with the various sources being taken from Earth.[3] "Atomic weight" is often loosely and incorrectly used as a synonym for standard atomic weight (incorrectly because standard atomic weights are not from a single sample). Standard atomic weight is nevertheless the most widely published variant of relative atomic mass.
Additionally, the continued use of the term "atomic weight" (for any element) as opposed to "relative atomic mass" has attracted considerable controversy since at least the 1960s, mainly due to the technical difference between weight and mass in physics.[4] Still, both terms are officially sanctioned by the IUPAC. The term "relative atomic mass" now seems to be replacing "atomic weight" as the preferred term, although the term "standard atomic weight" (as opposed to the more correct "standard relative atomic mass") continues to be used."
[{2020-04-21} https://en.wikipedia.org/wiki/Relative_atomic_mass]
name::
* McsEngl.chmElry'05_atomic-weight,
* McsEngl.chmElry'att006-atomic-weight,
* McsEngl.chmElry'atomic-weight-att006,
* McsEngl.chmElry'relative-atomic-mass,
description::
"The number of protons in the atomic nucleus also determines its electric charge, which in turn determines the number of electrons of the atom in its non-ionized state. The electrons are placed into atomic orbitals that determine the atom's various chemical properties. The number of neutrons in a nucleus usually has very little effect on an element's chemical properties (except in the case of hydrogen and deuterium). Thus, all carbon isotopes have nearly identical chemical properties because they all have six protons and six electrons, even though carbon atoms may differ in number of neutrons. It is for this reason that atomic number rather than mass number or atomic weight is considered the identifying characteristic of a chemical element.
[http://en.wikipedia.org/wiki/Chemical_element#Atomic_number]
name::
* McsEngl.chmElry'06_chemical-property,
* McsEngl.chmElry'att007-chemical-property,
* McsEngl.chmElry'chemical-property-att007,
generic-tree::
* chemical-property,
name::
* McsEngl.chmElry'07_physical-property,
* McsEngl.chmElry'att008-physical-property,
* McsEngl.chmElry'physical-property-att008,
name::
* McsEngl.chmElry'08_occurance,
* McsEngl.chmElry'att009-occurance,
* McsEngl.chmElry'occurance-att009,
description::
"State of matter (solid, liquid, or gas) applies at standard temperature and pressure conditions (STP)."
[http://en.wikipedia.org/wiki/Chemical_element#List_of_the_118_known_chemical_elements]
name::
* McsEngl.chmElry'09_state-of-matter,
* McsEngl.chmElry'att010-state-of-matter,
* McsEngl.chmElry'state-of-matter-att010,
description::
"The chemical elements can be broadly divided into metals, metalloids and nonmetals according to their shared physical and chemical properties. All metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metals; and have at least one basic oxide. Metalloids are metallic-looking brittle solids that are either semiconductors or exist in semiconducting forms, and have amphoteric or weakly acidic oxides. Typical nonmetals have a dull, coloured or colourless appearance; are brittle when solid; are poor conductors of heat and electricity; and have acidic oxides. Most or some elements in each category share a range of other properties; a few elements have properties that are either anomalous given their category, or otherwise extraordinary."
[{2020-01-03} https://en.wikipedia.org/wiki/Properties_of_metals,_metalloids_and_nonmetals]
name::
* McsEngl.chmElry'10_metalicity,
* McsEngl.chmElry'att011-metalicity,
* McsEngl.chmElry'metalicity-att011,
name::
* McsEngl.chmElry'11_usage,
* McsEngl.chmElry'att012-usage,
* McsEngl.chmElry'usage-att012,
name::
* McsEngl.chmElry'att013-nutritional-value,
* McsEngl.chmElry'nutritional-value-att013,
name::
* McsEngl.chmElry'12_toxicity,
* McsEngl.chmElry'att014-toxicity,
* McsEngl.chmElry'toxicity-att014,
description::
"Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism.[1] Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a substructure of the organism, such as a cell (cytotoxicity) or an organ such as the liver (hepatotoxicity). By extension, the word may be metaphorically used to describe toxic effects on larger and more complex groups, such as the family unit or society at large. Sometimes the word is more or less synonymous with poisoning in everyday usage.
A central concept of toxicology is that the effects of a toxicant are dose-dependent; even water can lead to water intoxication when taken in too high a dose, whereas for even a very toxic substance such as snake venom there is a dose below which there is no detectable toxic effect. Considering the limitations of this dose-response concept, a novel Drug Toxicity Index (DTI) has been proposed recently.[2] DTI redefines drug toxicity, identifies hepatotoxic drugs, gives mechanistic insights, predicts clinical outcomes and has potential as a screening tool. Toxicity is species-specific, making cross-species analysis problematic. Newer paradigms and metrics are evolving to bypass animal testing, while maintaining the concept of toxicity endpoints.[3]"
[{2020-04-21} https://en.wikipedia.org/wiki/Toxicity]
name::
* McsEngl.chmElry'Infrsc,
addressWpg::
* https://en.wikipedia.org/wiki/Chemical_element,
* properties: https://www.webelements.com/periodicity/contents/,
name::
* McsEngl.chmElry'doing,
name::
* McsEngl.evoluting-of-chmElry,
* McsEngl.chmElry'evoluting,
{2019-12-29}::
=== McsHitp-creation:
· creation of current concept.
{1869}:
=== PERIODIC-LAW
The chemical law that the properties of all the elements are periodic functions of their atomic weights was developed independently by two chemists, in 1869 by the Russian Dmitry Mendeleyev and in 1870 by the German Julius Lothar Meyer. The key to the success of their efforts was the realization that previous attempts had failed because a number of elements were as yet undiscovered and that vacant places must be left for such elements in the classification. Thus, although no element then known had an atomic weight between those of calcium and titanium, Mendeleyev left a vacant space for it in his table. This place was later assigned to the element scandium, discovered in 1879, which has properties justifying its position in the sequence. The discovery of scandium proved to be one of a series of dramatic verifications of the predictions based on the periodic law. Validation of the law accelerated the development of inorganic chemistry.
"Periodic Law," Microsoft(R) Encarta(R) 97 Encyclopedia. (c) 1993-1996 Microsoft Corporation. All rights reserved.
{1864}:
In 1864 the British chemist John A. R. Newlands listed the elements in the order of increasing atomic weights and noted that a given set of properties recurs at every eighth place. He named this periodic repetition the law of octaves, by analogy with the musical scales. Newlands's discovery failed to impress his contemporaries, probably because the observed periodicity was limited to only a small number of the known elements.
"Periodic Law," Microsoft(R) Encarta(R) 97 Encyclopedia. (c) 1993-1996 Microsoft Corporation. All rights reserved.
{1860}:
=== 1st INTERNATIONAL CHEMICAL CONGRESS:
In 1860, at the first international chemical congress ever held, the Italian chemist Stanislao Cannizzaro clarified the fact that some of the elements - for example, oxygen - have molecules containing two atoms. This realization finally enabled chemists to achieve a self-consistent listing of the elements.
"Periodic Law," Microsoft(R) Encarta(R) 97 Encyclopedia. (c) 1993-1996 Microsoft Corporation. All rights reserved.
{1859}:
=== SPECTROSCOPE:
The development of the spectroscope in 1859 by the German physicists Robert Wilhelm Bunsen and Gustav Robert Kirchhoff made possible the discovery of many more elements.
"Periodic Law," Microsoft(R) Encarta(R) 97 Encyclopedia. (c) 1993-1996 Microsoft Corporation. All rights reserved.
name::
* McsEngl.chmElry'whole-part-tree,
whole-chain::
* Sympan,
name::
* McsEngl.chmElry'generic-specific-tree,
generic-tree-of-::
* chemical-element, chemical-compound,
* chemical-substance, mixture,
* material-body,
* body, doing, relation,
* entity,
description::
"Periodic Table, a chart of all the chemical elements arranged in order of increasing atomic number, and in a manner that reflects the structure of the elements. The elements are arranged in seven horizontal rows, called the periods, and in 18 vertical columns, called the groups. The first period, containing two elements, hydrogen and helium, and the next two periods, each containing eight elements, are called the short periods. The remaining periods, called the long periods, contain 18 elements, as in periods 4 and 5, or 32 elements, as in period 6. The long period 7 includes the actinide series, which has been filled in by the synthesis of radioactive nuclei beyond element 92, uranium."
["Periodic Table," Microsoft(R) Encarta(R) 97 Encyclopedia. (c) 1993-1996 Microsoft Corporation. All rights reserved.]
name::
* McsEngl.chmElry.spec-div.periodic-table,
* McsEngl.periodic-table,
====== langoGreek:
* McsElln.περιοδικός-πίνακας!=periodic-table,
description::
"A period in the periodic table is a row of chemical elements. All elements in a row have the same number of electron shells. Each next element in a period has one more proton and is less metallic than its predecessor. Arranged this way, groups of elements in the same column have similar chemical and physical properties, reflecting the periodic law. For example, the halogens lie in the second-last column (group 17) and share similar properties, such as high reactivity and the tendency to gain one electron to arrive at a noble-gas electronic configuration As of 2016, a total of 118 elements have been discovered and confirmed.
The Madelung energy ordering rule describes the order in which orbitals are arranged by increasing energy according to the Madelung rule. Each diagonal corresponds to a different value of n + l.
Modern quantum mechanics explains these periodic trends in properties in terms of electron shells. As atomic number increases, shells fill with electrons in approximately the order shown at right. The filling of each shell corresponds to a row in the table.
In the s-block and p-block of the periodic table, elements within the same period generally do not exhibit trends and similarities in properties (vertical trends down groups are more significant). However, in the d-block, trends across periods become significant, and in the f-block elements show a high degree of similarity across periods."
[{2020-01-02} https://en.wikipedia.org/wiki/Period_(periodic_table)]
name::
* McsEngl.chmElrPeriod,
* McsEngl.chmElry.period!⇒chmElrPeriod,
* McsEngl.periodic-table'period!⇒chmElrPeriod,
description::
"In chemistry, a group (also known as a family[1]) is a column of elements in the periodic table of the chemical elements. There are 18 numbered groups in the periodic table; the f-block columns (between groups 3 and 4) are not numbered. The elements in a group have similar physical or chemical characteristics of the outermost electron shells of their atoms (i.e., the same core charge), because most chemical properties are dominated by the orbital location of the outermost electron.
There are three systems of group numbering for the groups; the same number may be assigned to different groups depending on the system being used. The modern numbering system of "group 1" to "group 18" has been recommended by the International Union of Pure and Applied Chemistry (IUPAC) since about 1990. It replaces two older incompatible naming schemes, used by the Chemical Abstract Service (CAS, more popular in the US), and by IUPAC before 1990 (more popular in Europe). The system of eighteen groups is generally accepted by the chemistry community, but some dissent exists about membership of several elements. Disagreements mostly involve elements number 1 and 2 (hydrogen and helium), as well as inner transition metals.
Groups may also be identified using their topmost element, or have a specific name. For example, group 16 is also described as the "oxygen group" and as the "chalcogens". An exception is the "iron group", which usually refers to "group 8", but in chemistry may also mean iron, cobalt, and nickel, or some other set of elements with similar chemical properties. In astrophysics and nuclear physics, it usually refers to iron, cobalt, nickel, chromium, and manganese."
[{2020-01-02} https://en.wikipedia.org/wiki/Group_(periodic_table)]
name::
* McsEngl.chmElrGroup,
* McsEngl.chmElry.group!⇒chmElrGroup,
* McsEngl.periodic-table'family!⇒chmElrGroup,
* McsEngl.periodic-table'group!⇒chmElrGroup,
====== langoGreek:
* McsElln.ομάδα_περιοδικου_πίνακα!⇒chmElrGroup,
* McsElln.στήλη_περιοδικου_πίνακα!⇒chmElrGroup,
description::
"A block of the periodic table is a set of chemical elements having their differentiating electrons predominately in the same type of atomic orbital. A differentiating electron is the electron that differentiates an element from the previous one. For example, sodium ([Ne] 3s1), when compared to neon ([He] 2s2 2p6), has a difference of one s-electron. The term appears to have been first used by Charles Janet.[1] Each block is named after its characteristic orbital: s-block; p-block; d-block; and f-block.
The block names (s, p, d and f) are derived from the spectroscopic notation for the value of an electron's azimuthal quantum number: sharp (0), principal (1), diffuse (2), or fundamental (3). Succeeding notations proceed in alphabetical order, as g, h, etc."
[{2020-01-02} https://en.wikipedia.org/wiki/Block_(periodic_table)]
name::
* McsEngl.chmElry.block,
* McsEngl.periodic-table'block,
description::
* http://www.ptable.com/?lang=el,
* http://el.wikipedia.org/wiki/Περιοδικός_πίνακας,
{1913}::
"To 1913 ο Moseley έδωσε το σημερινό τρόπο ταξινόμησης των στοιχείων στον περιοδικό πίνακα κατά σειρά αυξανόμενου ατομικού αριθμού (Ζ). Ο Moseley έγραψε: «Υπάρχει στο άτομο μία θεμελιώδης ποσότητα που αυξάνεται κανονικά από στοιχείο σε στοιχείο. Η ποσότητα αυτή είναι το θετικό ηλεκτρικό φορτίο. Ο αριθμός των θετικών φορτίων του πυρήνα είναι ίδιος με τον αύξοντα αριθμό που έχει το στοιχείο στον περιοδικό πίνακα.» Έτσι διαμορφώθηκε ο σύγχρονος περιοδικός νόμος:
Οι ιδιότητες των στοιχείων είναι περιοδικές συναρτήσεις του ατομικού αριθμού."
[http://digitalschool.minedu.gov.gr/modules/ebook/show.php/DSGL111/394/2612,10245/]
{2015-12-30}::
=== The periodic table gets 4 new elements
Written by Akshat Rathi, Reporter, Quartz
Published Tuesday 5 January 2016
This article is published in collaboration with Quartz.
If science has an iconic image, it is that of the periodic table of elements.
To a keen eye, however, there were gaps. Large empty slots in the seventh row where, although scientists had predicted the existence of an element, they hadn’t found one.
160105-periodic table Quartz
On Dec. 30, those holes were filled by the official body that governs the rules of naming chemicals and defining its measurements. The International Union of Pure and Applied Chemistry (IUPAC) added four new elements (number 113, 115, 117, and 118) and completed the seventh row in the periodic table.
The RIKEN institute in Japan was credited with the discovery of element 113, and thus received naming rights. It is the first time Asian scientists will get to name an element. The remaining elements were discovered by Russian and American scientists.
These chemical elements—which find their unique place in the table depending on the number protons in their nuclei—are fundamental building blocks of the universe. So unless future humans change the names of elements, naming one is creating history. Existing elements have been named after mythological concepts (cerium), minerals (lithium), places (americium), or scientists (einsteinium).
Although the four new elements are credited as having been “discovered,” on Earth they had to be created because the conditions under which these elements exist are extreme. To do this, scientists slam already existing elements into each other at near speeds of light, and end up with a handful of atoms of a new element that exist for only fractions of a second. In fact, all elements from 95 to 118 are synthetic elements that once formed quickly decay into simpler elements.
Publication does not imply endorsement of views by the World Economic Forum.
To keep up with the Agenda subscribe to our weekly newsletter.
Author: Akshat Rathi is a reporter for Quartz in London.
Image: A sign showing titanium on the periodic table of elements is seen at the Nobel Biocare manufacturing facility in Yorba Linda, California. REUTERS/Mike Blake.
[http://www.weforum.org/agenda/2016/01/the-periodic-table-gets-4-new-elements/]
name::
* McsEngl.evoluting-of-periodic-table,
* McsEngl.periodic-table'evoluting,
description::
* Actinium-Ac89,
* Aluminium-Al13,
* Americium-Am95,
* Antimony-Sb51,
* Argon-Ar18,
* Arsenic-As33,
* Astatine-At85,
* Barium-Ba56,
* Berkelium-Bk97,
* Beryllium-Be4,
* Bismuth-Bi83,
* Bohrium-Bh107,
* Boron-B5,
* Bromine-Br35,
* Cadmium-Cd48,
* Caesium-Cs55,
* Calcium-Ca20,
* Californium-Cf98,
* Carbon-C6,
* Cerium-Ce58,
* Cesium-Cs55,
* Chlorine-Cl17,
* Chromium-Cr24,
* Cobalt-Co27,
* Copper-Cu29,
* Curium-Cm96,
* Darmstadtium-Ds110,
* Dubnium-Db105,
* Dysprosium-Dy66,
* Einsteinium-Es99,
* Erbium-Er68,
* Europium-Eu63,
* Fermium-Fm100,
* Fluorine-F9,
* Francium-Fr87,
* Gadolinium-Gd64,
* Gallium-Ga31,
* Germanium-Ge32,
* Gold-Au79,
* Hafnium-Hf72,
* Hassium-Hs108,
* Helium-He2,
* Holmium-Ho67,
* Hydrogen-H1,
* Indium-In49,
* Iodine-I53,
* Iridium-Ir77,
* Iron-Fe26,
* Krypton-Kr36,
* Lanthanum-La57,
* Lawrencium-Lr103,
* Lead-Pb82,
* Lithium-Li3,
* Lutetium-Lu71,
* Magnesium-Mg12,
* Manganese-Mn25,
* Meitnerium-Mt109,
* Mendelevium-Md101,
* Mercury-Hg80,
* Molybdenum-Mo42,
* Neodymium-Nd60,
* Neon-Ne10,
* Neptunium-Np93,
* Nickel-Ni28,
* Niobium-Nb41,
* Nitrogen-N7,
* Nobelium-No102,
* Osmium-Os76,
* Oxygen-O8,
* Palladium-Pd46,
* Phosphorus-P15,
* Platinum-Pt78,
* Plutonium-Pu94,
* Polonium-Po84,
* Potassium-K19,
* Praseodymium-Pr59,
* Promethium-Pm61,
* Protactinium-Pa91,
* Radium-Ra88,
* Radon-Rn86,
* Rhenium-Re75,
* Rhodium-Rh45,
* Rubidium-Rb37,
* Ruthenium-Ru44,
* Rutherfordium-Rf104,
* Samarium-Sm62,
* Scandium-Sc21,
* Seaborgium-Sg106,
* Selenium-Se34,
* Silicon-Si14,
* Silver-Ag47,
* Sodium-Na11,
* Strontium-Sr38,
* Sulfur-S16,
* Tantalum-Ta73,
* Technetium-Tc43,
* Tellurium-Te52,
* Terbium-Tb65,
* Thallium-Tl81,
* Thorium-Th90,
* Thulium-Tm69,
* Tin-Sn50,
* Titanium-Ti22,
* Tungsten-W74,
* Ununbium-Uub112,
* Ununhexium-Uuh116,
* Ununoctium-Uuo118,
* Ununpentium-Uup115,
* Ununquadium-Uuq114,
* Ununseptium-Uus117,
* Ununtrium-Uut113,
* Ununium-Uuu111,
* Uranium-U92,
* Vanadium-V23,
* Xenon-Xe54,
* Ytterbium-Yb70,
* Yttrium-Y39,
* Zinc-Zn30,
* Zirconium-Zr40,
description::
* Ac89-Actinium,
* Ag47-Silver,
* Al13-Aluminium,
* Am95-Americium,
* Ar18-Argon,
* As33-Arsenic,
* At85-Astatine,
* Au79-Gold,
* B5-Boron,
* Ba56-Barium,
* Be4-Beryllium,
* Bh107-Bohrium,
* Bi83-Bismuth,
* Bk97-Berkelium,
* Br35-Bromine,
* C6-Carbon,
* Ca20-Calcium,
* Cd48-Cadmium,
* Ce58-Cerium,
* Cf98-Californium,
* Cl17-Chlorine,
* Cm96-Curium,
* Co27-Cobalt,
* Cr24-Chromium,
* Cs55-Caesium,
* Cs55-Cesium,
* Cu29-Copper,
* Db105-Dubnium,
* Ds110-Darmstadtium,
* Dy66-Dysprosium,
* Er68-Erbium,
* Es99-Einsteinium,
* Eu63-Europium,
* F9-Fluorine,
* Fe26-Iron,
* Fm100-Fermium,
* Fr87-Francium,
* Ga31-Gallium,
* Gd64-Gadolinium,
* Ge32-Germanium,
* H1-Hydrogen,
* He2-Helium,
* Hf72-Hafnium,
* Hg80-Mercury,
* Ho67-Holmium,
* Hs108-Hassium,
* I53-Iodine,
* In49-Indium,
* Ir77-Iridium,
* K19-Potassium,
* Kr36-Krypton,
* La57-Lanthanum,
* Li3-Lithium,
* Lr103-Lawrencium,
* Lu71-Lutetium,
* Md101-Mendelevium,
* Mg12-Magnesium,
* Mn25-Manganese,
* Mo42-Molybdenum,
* Mt109-Meitnerium,
* N7-Nitrogen,
* Na11-Sodium,
* Nb41-Niobium,
* Nd60-Neodymium,
* Ne10-Neon,
* Ni28-Nickel,
* No102-Nobelium,
* Np93-Neptunium,
* O8-Oxygen,
* Os76-Osmium,
* P15-Phosphorus,
* Pa91-Protactinium,
* Pb82-Lead,
* Pd46-Palladium,
* Pm61-Promethium,
* Po84-Polonium,
* Pr59-Praseodymium,
* Pt78-Platinum,
* Pu94-Plutonium,
* Ra88-Radium,
* Rb37-Rubidium,
* Re75-Rhenium,
* Rf104-Rutherfordium,
* Rh45-Rhodium,
* Rn86-Radon,
* Ru44-Ruthenium,
* S16-Sulfur,
* Sb51-Antimony,
* Sc21-Scandium,
* Se34-Selenium,
* Sg106-Seaborgium,
* Si14-Silicon,
* Sm62-Samarium,
* Sn50-Tin,
* Sr38-Strontium,
* Ta73-Tantalum,
* Tb65-Terbium,
* Tc43-Technetium,
* Te52-Tellurium,
* Th90-Thorium,
* Ti22-Titanium,
* Tl81-Thallium,
* Tm69-Thulium,
* U92-Uranium,
* Uub112-Ununbium,
* Uuh116-Ununhexium,
* Uuo118-Ununoctium,
* Uup115-Ununpentium,
* Uuq114-Ununquadium,
* Uus117-Ununseptium,
* Uut113-Ununtrium,
* Uuu111-Ununium,
* V23-Vanadium,
* W74-Tungsten,
* Xe54-Xenon,
* Y39-Yttrium,
* Yb70-Ytterbium,
* Zn30-Zinc,
* Zr40-Zirconium,
description::
· on atomic-number:
* 1-Hydrogen-H,
* 2-Helium-He,
* 3-Lithium-Li,
* 4-Beryllium-Be,
* 5-Boron-B,
* 6-Carbon-C,
* 7-Nitrogen-N,
* 8-Oxygen-O,
* 9-Fluorine-F,
* 10-Neon-Ne,
* 11-Sodium-Na,
* 12-Magnesium-Mg,
* 13-Aluminium-Al,
* 14-Silicon-Si,
* 15-Phosphorus-P,
* 16-Sulfur-S,
* 17-Chlorine-Cl,
* 18-Argon-Ar,
* 19-Potassium-K,
* 20-Calcium-Ca,
* 21-Scandium-Sc,
* 22-Titanium-Ti,
* 23-Vanadium-V,
* 24-Chromium-Cr,
* 25-Manganese-Mn,
* 26-Iron-Fe,
* 27-Cobalt-Co,
* 28-Nickel-Ni,
* 29-Copper-Cu,
* 30-Zinc-Zn,
* 31-Gallium-Ga,
* 32-Germanium-Ge,
* 33-Arsenic-As,
* 34-Selenium-Se,
* 35-Bromine-Br,
* 36-Krypton-Kr,
* 37-Rubidium-Rb,
* 38-Strontium-Sr,
* 39-Yttrium-Y,
* 40-Zirconium-Zr,
* 41-Niobium-Nb,
* 42-Molybdenum-Mo,
* 43-Technetium-Tc,
* 44-Ruthenium-Ru,
* 45-Rhodium-Rh,
* 46-Palladium-Pd,
* 47-Silver-Ag,
* 48-Cadmium-Cd,
* 49-Indium-In,
* 50-Tin-Sn,
* 51-Antimony-Sb,
* 52-Tellurium-Te,
* 53-Iodine-I,
* 54-Xenon-Xe,
* 55-Caesium-Cs,
* 55-Cesium-Cs,
* 56-Barium-Ba,
* 57-Lanthanum-La,
* 58-Cerium-Ce,
* 59-Praseodymium-Pr,
* 60-Neodymium-Nd,
* 61-Promethium-Pm,
* 62-Samarium-Sm,
* 63-Europium-Eu,
* 64-Gadolinium-Gd,
* 65-Terbium-Tb,
* 66-Dysprosium-Dy,
* 67-Holmium-Ho,
* 68-Erbium-Er,
* 69-Thulium-Tm,
* 70-Ytterbium-Yb,
* 71-Lutetium-Lu,
* 72-Hafnium-Hf,
* 73-Tantalum-Ta,
* 74-Tungsten-W,
* 75-Rhenium-Re,
* 76-Osmium-Os,
* 77-Iridium-Ir,
* 78-Platinum-Pt,
* 79-Gold-Au,
* 80-Mercury-Hg,
* 81-Thallium-Tl,
* 82-Lead-Pb,
* 83-Bismuth-Bi,
* 84-Polonium-Po,
* 85-Astatine-At,
* 86-Radon-Rn,
* 87-Francium-Fr,
* 88-Radium-Ra,
* 89-Actinium-Ac,
* 90-Thorium-Th,
* 91-Protactinium-Pa,
* 92-Uranium-U,
* 93-Neptunium-Np,
* 94-Plutonium-Pu,
* 95-Americium-Am,
* 96-Curium-Cm,
* 97-Berkelium-Bk,
* 98-Californium-Cf,
* 99-Einsteinium-Es,
* 100-Fermium-Fm,
* 101-Mendelevium-Md,
* 102-Nobelium-No,
* 103-Lawrencium-Lr,
* 104-Rutherfordium-Rf,
* 105-Dubnium-Db,
* 106-Seaborgium-Sg,
* 107-Bohrium-Bh,
* 108-Hassium-Hs,
* 109-Meitnerium-Mt,
* 110-Darmstadtium-Ds,
* 111-Ununium-Uuu,
* 112-Ununbium-Uub,
* 113-Ununtrium-Uut,
* 114-Ununquadium-Uuq,
* 115-Ununpentium-Uup,
* 116-Ununhexium-Uuh,
* 117-Ununseptium-Uus,
* 118-Ununoctium-Uuo,
description::
· on state-of-matter:
* gas-chmElry,
* liquid-chmElry,
* solid-chmElry,
description::
"Ο αριθμός που δείχνει από πόσα άτομα συγκροτείται το μόριο ενός στοιχείου ονομάζεται ατομικότητα στοιχείου
Η ατομικότητα του στοιχείου αναγράφεται ως δείκτης στο σύμβολο του στοιχείου. Παρακάτω δίνεται πίνακας με τις ατομικότητες των σημαντικότερων στοιχείων.
ΠΙΝΑΚΑΣ 1.3: Ατομικότητες στοιχείων
ΜΟΝΟΑΤΟΜΙΚΑ: Ευγενή αέρια: He, Ne, Ar, Kr, Xe, Rn, και τα μέταλλα σε κατάσταση ατμών.
Επίσης, στις χημικές εξισώσεις γράφονται σαν μονοατομικά τα στοιχεία C, S και P.
ΔΙΑΤΟΜΙΚΑ: Η2, O2, Ν2, F2, Cl2, Br2, I2.
ΤΡΙΑΤΟΜΙΚΑ: O3.
ΤΕΤΡΑΤΟΜΙΚΑ: Ρ4, As4, Sb4."
[http://digitalschool.minedu.gov.gr/modules/ebook/show.php/DSGL111/394/2612,10241/]
name::
* McsEngl.chmElry.spec-div.number-of-atoms-in-molecule,
description::
· there are 118 individual chemical-elements.
name::
* McsEngl.chmElrGncNo,
* McsEngl.chmElry.aggregate,
* McsEngl.chmElry.genericNo,
* McsEngl.chmElry.individual,
naming::
"Βαπτίστηκαν" τα 4 νέα στοιχεία του Περιοδικού Πίνακα
ΑΘΗΝΑ 03/12/2016
Η Διεθνής Ένωση Καθαρής και Εφαρμοσμένης Χημείας ανακοίνωσε ότι -μετά από πεντάμηνη διαβούλευση- ενέκρινε επίσημα τα προτεινόμενα από τους επιστήμονες ονόματα για τα τέσσερα νέα χημικά στοιχεία, που ανακαλύφθηκαν τα τελευταία χρόνια και προστίθενται στον Περιοδικό Πίνακα.
Μέχρι τώρα τα στοιχεία αυτά αναφέρονταν μόνο με αριθμούς (113, 115, 117 και 118). Τα επίσημα πλέον ονόματα και αντίστοιχα σύμβολα για κάθε στοιχείο είναι: για το 113 νιχόνιο (Nh), για το 115 μοσκόβιο (Mc), για το 117 τενεσίνο (Ts) και για το 118 ογκάνεσον (Og).
Πρόκειται για πολύ βαριά στοιχεία, τα οποία είναι τα πρώτα που προστίθενται στον Περιοδικό Πίνακα μετά το 2011 και συμπληρώνουν την έβδομη σειρά του. Και τα τέσσερα συντέθηκαν από επιστήμονες μέσω «βομβαρδισμού» ατομικών πυρήνων και δεν υπάρχουν σε φυσική κατάσταση. Κανένα στοιχείο βαρύτερο από το ουράνιο (με 92 πρωτόνια και 146 νετρόνια) δεν έχει παρατηρηθεί εκτός εργαστηρίου εδώ και αρκετό χρονικό διάστημα.
Παραδοσιακά, όσοι επιστήμονες ανακαλύπτουν ένα στοιχείο, έχουν και το δικαίωμα να προτείνουν το όνομά του. Έτσι, το νιχόνιο, που ανακαλύφθηκε στον ιαπωνικό επιταχυντή RIKEN, έχει πάρει το όνομα της Ιαπωνίας στα ιαπωνικά («χώρα του ανατέλλοντος ηλίου»). Το μοσκόβιο, που ανακαλύφθηκε από το ρωσικό Κοινό Ινστιτούτο Πυρηνικών Ερευνών Ντούμπνα, φέρει το όνομα της Μόσχας.
Το τενεσίνο, που βρέθηκε από το Εθνικό Εργαστήριο Όακ Ριντζ και το Πανεπιστήμιο Βάντερμπιλτ του Τενεσί, παραπέμπει στο όνομα της συγκεκριμένης πολιτείας των ΗΠΑ. Το ογκάνεσον φέρει το όνομα του ρώσου καθηγητή πυρηνικής φυσικής Γιούρι Ογκανεσιάν, ο οποίος έπαιξε καθοριστικό ρόλο στην ανακάλυψή του.
[http://www.nooz.gr/tech/vaptistikan-ta-4-nea-stoixeia-tou-periodikoi-pinaka]
name::
* McsEngl.chmElrGnc,
* McsEngl.chmElry.individualNo,
description::
* https://en.wikipedia.org/wiki/Names_for_sets_of_chemical_elements,
name::
* McsEngl.chmElry.89-Actinium-Ac!⇒chmElrAc89,
* McsEngl.chmElry.Actinium-Ac89!⇒chmElrAc89,
* McsEngl.chmElry.Ac89-Actinium!⇒chmElrAc89,
* McsEngl.chmElrAc89!=Actinium,
* McsEngl.Actinium-Ac89-chmElry!⇒chmElrAc89,
* McsEngl.Ac89-Actinium-chmElry!⇒chmElrAc89,
====== langoGreek:
* McsElln.Ακτίνιο-Ac89,
name::
* McsEngl.mtrlAtom.Actinium!⇒atomActinium,
* McsEngl.Actinium-atom!⇒atomActinium,
* McsEngl.atomActinium,
* McsEngl.atomAc89!⇒atomActinium,
generic-tree::
* material-atom,
description::
Το αργίλιο ή αλουμίνιο (Aluminium) είναι το χημικό στοιχείο με σύμβολο Al και ατομικό αριθμό 13. Είναι ένα αργυρόλευκο μέταλλο στοιχείο που ανήκει στην ομάδα IIIA (13) του περιοδικού συστήματος μαζί με το βόριο. Είναι το πιο άφθονο μέταλλο στο φλοιό της Γης και συνολικά το τρίτο (3ο) πιο άφθονο χημικό στοιχείο συνολικά στον πλανήτη μας, μετά το οξυγόνο και το πυρίτιο. Κατά βάρος αποτελεί περίπου το 8% του στερεού φλοιού. Ωστόσο είναι πολύ δραστικό χημικά ώστε να βρίσκεται στη φύση ως ελεύθερο μέταλλο. Αντίθετα, βρίσκεται ενωμένο σε πάνω από 270 διαφορετικά ορυκτά[1]. Η κύρια πηγή για τη βιομηχανική παραγωγή του μετάλλου είναι ο βωξίτης.
Το μεταλλικό αλουμίνιο έχει (φαινομενικά) μεγάλη ικανότητα στο να αντιστέκεται στη διάβρωση. Αυτό στην ουσία συμβαίνει γιατί με την έκθεση του μετάλλου στην ατμόσφαιρα σχηματίζει στιγμιαία ένα λεπτό επιφανειακό, μη ορατό, στρώμα οξειδίου του, που εμποδίζει τη βαθύτερη διάβρωσή του (φαινόμενο της παθητικοποίησης). Επίσης, εξαιτίας της σχετικά χαμηλής του πυκνότητας και της μεγάλης του ικανότητας να δημιουργεί μεγάλη ποικιλία κραμάτων, έγινε στρατηγικό μέταλλο για την αεροδιαστημική (και όχι μόνο) βιομηχανία. Είναι, επίσης, εξαιρετικά χρήσιμο στη χημική βιομηχανία, τόσο αυτούσιο ως καταλύτης, όσο και με τη μορφή διαφόρων ενώσεών του.
[http://el.wikipedia.org/wiki/Αργίλιο]
name::
* McsEngl.chmElry.13-Aluminium-Al!⇒chmElrAl13,
* McsEngl.chmElry.Aluminium-Al13!⇒chmElrAl13,
* McsEngl.chmElry.Al13-Aluminium!⇒chmElrAl13,
* McsEngl.chmElrAl13!=Aluminium,
* McsEngl.Aluminium-Al13-chmElry!⇒chmElrAl13,
* McsEngl.Al13-Aluminium-chmElry!⇒chmElrAl13,
====== langoGreek:
* McsElln.Αλουμίνιο-Al13,
* McsElln.Αργίλιο-Al13,
name::
* McsEngl.mtrlAtom.Aluminium!⇒atomAluminium,
* McsEngl.Aluminium-atom!⇒atomAluminium,
* McsEngl.atomAluminium,
* McsEngl.atomAl13!⇒atomAluminium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.95-Americium-Am!⇒chmElrAm95,
* McsEngl.chmElry.Americium-Am95!⇒chmElrAm95,
* McsEngl.chmElry.Am95-Americium!⇒chmElrAm95,
* McsEngl.chmElrAm95!=Americium,
* McsEngl.Americium-Am95-chmElry!⇒chmElrAm95,
* McsEngl.Am95-Americium-chmElry!⇒chmElrAm95,
====== langoGreek:
* McsElln.Αμερίκιο-Am95,
name::
* McsEngl.mtrlAtom.Americium!⇒atomAmericium,
* McsEngl.Americium-atom!⇒atomAmericium,
* McsEngl.atomAmericium,
* McsEngl.atomAm95!⇒atomAmericium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.51-Antimony-Sb!⇒chmElrSb51,
* McsEngl.chmElry.Antimony-Sb51!⇒chmElrSb51,
* McsEngl.chmElry.Sb51-Antimony!⇒chmElrSb51,
* McsEngl.chmElrSb51!=Antimony,
* McsEngl.Antimony-Sb51-chmElry!⇒chmElrSb51,
* McsEngl.Sb51-Antimony-chmElry!⇒chmElrSb51,
====== langoGreek:
* McsElln.Αντιμόνιο-Sb51,
name::
* McsEngl.mtrlAtom.Antimony!⇒atomAntimony,
* McsEngl.Antimony-atom!⇒atomAntimony,
* McsEngl.atomAntimony,
* McsEngl.atomSb51!⇒atomAntimony,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.18-Argon-Ar!⇒chmElrAr18,
* McsEngl.chmElry.Argon-Ar18!⇒chmElrAr18,
* McsEngl.chmElry.Ar18-Argon!⇒chmElrAr18,
* McsEngl.chmElrAr18!=Argon,
* McsEngl.Argon-Ar18-chmElry!⇒chmElrAr18,
* McsEngl.Ar18-Argon-chmElry!⇒chmElrAr18,
====== langoGreek:
* McsElln.Αργό-Ar18,
name::
* McsEngl.mtrlAtom.Argon!⇒atomArgon,
* McsEngl.Argon-atom!⇒atomArgon,
* McsEngl.atomArgon,
* McsEngl.atomAr18!⇒atomArgon,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.33-Arsenic-As!⇒chmElrAs33,
* McsEngl.chmElry.Arsenic-As33!⇒chmElrAs33,
* McsEngl.chmElry.As33-Arsenic!⇒chmElrAs33,
* McsEngl.chmElrAs33!=Arsenic,
* McsEngl.Arsenic-As33-chmElry!⇒chmElrAs33,
* McsEngl.As33-Arsenic-chmElry!⇒chmElrAs33,
====== langoGreek:
* McsElln.Αρσενικό-As33,
name::
* McsEngl.mtrlAtom.Arsenic!⇒atomArsenic,
* McsEngl.Arsenic-atom!⇒atomArsenic,
* McsEngl.atomArsenic,
* McsEngl.atomAs33!⇒atomArsenic,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.85-Astatine-At!⇒chmElrAt85,
* McsEngl.chmElry.Astatine-At85!⇒chmElrAt85,
* McsEngl.chmElry.At85-Astatine!⇒chmElrAt85,
* McsEngl.chmElrAt85!=Astatine,
* McsEngl.Astatine-At85-chmElry!⇒chmElrAt85,
* McsEngl.At85-Astatine-chmElry!⇒chmElrAt85,
====== langoGreek:
* McsElln.Άστατο-At85,
name::
* McsEngl.mtrlAtom.Astatine,
* McsEngl.chmElrAt85'atom!⇒atomAstatine,
* McsEngl.Astatine-atom!⇒atomAstatine,
* McsEngl.atomAstatine,
* McsEngl.atomAt85!⇒atomAstatine,
generic-tree::
* material-atom,
description::
"Which Chemical Element Is the Hardest to Find?
Astatine is the rarest naturally-occurring element, with less than 1 ounce in the Earth's crust at any given time.
Astatine is the most rare naturally-occurring element on Earth. In fact, scientists know very little about this radioactive semi-metal, which forms during the decay of uranium and thorium. Physicists have to infer many of the element’s properties -- such as its radioactive properties, its conduction qualities, and its color -- and it’s thought that only about 25 grams occur naturally on the planet at any given time. In addition to its scarcity, astatine doesn’t last very long. Astatine-210, the element’s most stable form, has a half-life of 8.1 hours, which means that it you found some, half of it would be gone after a typical workday."
[Read More: http://www.wisegeek.com/which-chemical-element-is-the-hardest-to-find.htm?m {2020-01-09}]
name::
* McsEngl.chmElry.56-Barium-Ba!⇒chmElrBa56,
* McsEngl.chmElry.Barium-Ba56!⇒chmElrBa56,
* McsEngl.chmElry.Ba56-Barium!⇒chmElrBa56,
* McsEngl.chmElrBa56!=Barium,
* McsEngl.Barium-Ba56-chmElry!⇒chmElrBa56,
* McsEngl.Ba56-Barium-chmElry!⇒chmElrBa56,
====== langoGreek:
* McsElln.Βάριο-Ba56,
name::
* McsEngl.mtrlAtom.Barium!⇒atomBarium,
* McsEngl.Barium-atom!⇒atomBarium,
* McsEngl.atomBarium,
* McsEngl.atomBa56!⇒atomBarium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.97-Berkelium-Bk!⇒chmElrBk97,
* McsEngl.chmElry.Berkelium-Bk97!⇒chmElrBk97,
* McsEngl.chmElry.Bk97-Berkelium!⇒chmElrBk97,
* McsEngl.chmElrBk97!=Berkelium,
* McsEngl.Berkelium-Bk97-chmElry!⇒chmElrBk97,
* McsEngl.Bk97-Berkelium-chmElry!⇒chmElrBk97,
====== langoGreek:
* McsElln.Μπερκέλιο-Bk97,
name::
* McsEngl.mtrlAtom.Berkelium!⇒atomBerkelium,
* McsEngl.Berkelium-atom!⇒atomBerkelium,
* McsEngl.atomBerkelium,
* McsEngl.atomBk97!⇒atomBerkelium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.4-Beryllium-Be!⇒chmElrBe4,
* McsEngl.chmElry.Beryllium-Be4!⇒chmElrBe4,
* McsEngl.chmElry.Be4-Beryllium!⇒chmElrBe4,
* McsEngl.chmElrBe4!=Beryllium,
* McsEngl.Beryllium-Be4-chmElry!⇒chmElrBe4,
* McsEngl.Be4-Beryllium-chmElry!⇒chmElrBe4,
====== langoGreek:
* McsElln.Βηρύλλιο-Be4,
name::
* McsEngl.mtrlAtom.Beryllium!⇒atomBeryllium,
* McsEngl.Beryllium-atom!⇒atomBeryllium,
* McsEngl.atomBeryllium,
* McsEngl.atomBe4!⇒atomBeryllium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.83-Bismuth-Bi!⇒chmElrBi83,
* McsEngl.chmElry.Bismuth-Bi83!⇒chmElrBi83,
* McsEngl.chmElry.Bi83-Bismuth!⇒chmElrBi83,
* McsEngl.chmElrBi83!=Bismuth,
* McsEngl.Bismuth-Bi83-chmElry!⇒chmElrBi83,
* McsEngl.Bi83-Bismuth-chmElry!⇒chmElrBi83,
====== langoGreek:
* McsElln.Βισμούθιο-Bi83,
name::
* McsEngl.mtrlAtom.Bismuth!⇒atomBismuth,
* McsEngl.Bismuth-atom!⇒atomBismuth,
* McsEngl.atomBismuth,
* McsEngl.atomBi83!⇒atomBismuth,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.107-Bohrium-Bh!⇒chmElrBh107,
* McsEngl.chmElry.Bohrium-Bh107!⇒chmElrBh107,
* McsEngl.chmElry.Bh107-Bohrium!⇒chmElrBh107,
* McsEngl.chmElrBh107!=Bohrium,
* McsEngl.Bohrium-Bh107-chmElry!⇒chmElrBh107,
* McsEngl.Bh107-Bohrium-chmElry!⇒chmElrBh107,
====== langoGreek:
* McsElln.Μπόριο-Bh107,
name::
* McsEngl.mtrlAtom.Bohrium!⇒atomBohrium,
* McsEngl.Bohrium-atom!⇒atomBohrium,
* McsEngl.atomBohrium,
* McsEngl.atomBh107!⇒atomBohrium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.5-Boron-B!⇒chmElrB5,
* McsEngl.chmElry.Boron-B5!⇒chmElrB5,
* McsEngl.chmElry.B5-Boron!⇒chmElrB5,
* McsEngl.chmElrB5,
* McsEngl.Boron-B5-chmElry!⇒chmElrB5,
* McsEngl.B5-Boron-chmElry!⇒chmElrB5,
====== langoGreek:
* McsElln.Βόριο-B5,
name::
* McsEngl.mtrlAtom.Boron!⇒atomBoron,
* McsEngl.Boron-atom!⇒atomBoron,
* McsEngl.atomBoron,
* McsEngl.atomB5!⇒atomBoron,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.35-Bromine-Br!⇒chmElrBr35,
* McsEngl.chmElry.Bromine-Br35!⇒chmElrBr35,
* McsEngl.chmElry.Br35-Bromine!⇒chmElrBr35,
* McsEngl.chmElrBr35!=Bromine,
* McsEngl.Bromine-Br35-chmElry!⇒chmElrBr35,
* McsEngl.Br35-Bromine-chmElry!⇒chmElrBr35,
====== langoGreek:
* McsElln.Βρώμιο-Br35,
name::
* McsEngl.mtrlAtom.Bromine!⇒atomBromine,
* McsEngl.Bromine-atom!⇒atomBromine,
* McsEngl.atomBromine,
* McsEngl.atomBr35!⇒atomBromine,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.48-Cadmium-Cd!⇒chmElrCd48,
* McsEngl.chmElry.Cadmium-Cd48!⇒chmElrCd48,
* McsEngl.chmElry.Cd48-Cadmium!⇒chmElrCd48,
* McsEngl.chmElrCd48!=Cadmium,
* McsEngl.Cadmium-Cd48-chmElry!⇒chmElrCd48,
* McsEngl.Cd48-Cadmium-chmElry!⇒chmElrCd48,
====== langoGreek:
* McsElln.Κάδμιο-Cd48,
name::
* McsEngl.mtrlAtom.Cadmium!⇒atomCadmium,
* McsEngl.Cadmium-atom!⇒atomCadmium,
* McsEngl.atomCadmium,
* McsEngl.atomCd48!⇒atomCadmium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.55-Caesium-Cs!⇒chmElrCs55,
* McsEngl.chmElry.Caesium-Cs55!⇒chmElrCs55,
* McsEngl.chmElry.Cs55-Caesium!⇒chmElrCs55,
* McsEngl.chmElrCs55!=Caesium,
* McsEngl.Caesium-Cs55-chmElry!⇒chmElrCs55,
* McsEngl.Cs55-Caesium-chmElry!⇒chmElrCs55,
* McsEngl.Cesium-Cs55,
====== langoGreek:
* McsElln.Καίσιο-Cesium,
name::
* McsEngl.mtrlAtom.Caesium!⇒atomCaesium,
* McsEngl.Caesium-atom!⇒atomCaesium,
* McsEngl.atomCaesium,
* McsEngl.atomCs55!⇒atomCaesium,
generic-tree::
* material-atom,
description::
"Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to its heavier homologues strontium and barium. It is the fifth most abundant element in Earth's crust and the third most abundant metal, after iron and aluminium. The most common calcium compound on Earth is calcium carbonate, found in limestone and the fossilised remnants of early sea life; gypsum, anhydrite, fluorite, and apatite are also sources of calcium. The name derives from Latin calx "lime", which was obtained from heating limestone.
Some calcium compounds were known to the ancients, though their chemistry was unknown until the seventeenth century. Pure calcium was isolated in 1808 via electrolysis of its oxide by Humphry Davy, who named the element. Calcium compounds are widely used in many industries: in foods and pharmaceuticals for calcium supplementation, in the paper industry as bleaches, as components in cement and electrical insulators, and in the manufacture of soaps. On the other hand, the metal in pure form has few applications due to its high reactivity; still, in small quantities it is often used as an alloying component in steelmaking, and sometimes, as a calcium–lead alloy, in making automotive batteries.
Calcium is the most abundant metal and the fifth-most abundant element in the human body.[5] As electrolytes, calcium ions play a vital role in the physiological and biochemical processes of organisms and cells: in signal transduction pathways where they act as a second messenger; in neurotransmitter release from neurons; in contraction of all muscle cell types; as cofactors in many enzymes; and in fertilization.[5] Calcium ions outside cells are important for maintaining the potential difference across excitable cell membranes, protein synthesis, and bone formation.[5][6]"
[{2020-02-03} https://en.wikipedia.org/wiki/Calcium]
name::
* McsEngl.chmElry.20-Calcium-Ca!⇒chmElrCa20,
* McsEngl.chmElry.Calcium-Ca20!⇒chmElrCa20,
* McsEngl.chmElry.Ca20-Calcium!⇒chmElrCa20,
* McsEngl.chmElrCa20!=Calcium,
* McsEngl.Calcium-Ca20-chmElry!⇒chmElrCa20,
* McsEngl.Ca20-Calcium-chmElry!⇒chmElrCa20,
====== langoGreek:
* McsElln.Ασβέστιο-Ca20,
description::
* ΕΝΙΣΧΥΕΙ ΤΑ ΟΣΤΑ,
* ΠΡΟΛΑΜΒΑΝΕΙ ΤΗΝ ΟΣΤΕΟΠΟΡΩΣΗ,
* ΜΠΟΡΕΙ ΝΑ ΜΕΙΩΣΕΙ ΤΗΝ ΠΙΕΣΗ ΑΙΜΑΤΟΣ,
name::
* McsEngl.chmElry.98-Californium-Cf!⇒chmElrCf98,
* McsEngl.chmElry.Californium-Cf98!⇒chmElrCf98,
* McsEngl.chmElry.Cf98-Californium!⇒chmElrCf98,
* McsEngl.chmElrCf98!=Californium,
* McsEngl.Californium-Cf98-chmElry!⇒chmElrCf98,
* McsEngl.Cf98-Californium-chmElry!⇒chmElrCf98,
====== langoGreek:
* McsElln.Καλιφόρνιο-Cf98,
name::
* McsEngl.mtrlAtom.Californium!⇒atomCalifornium,
* McsEngl.Californium-atom!⇒atomCalifornium,
* McsEngl.atomCalifornium,
* McsEngl.atomCa20!⇒atomCalifornium,
generic-tree::
* material-atom,
description::
Carbon, symbol C, element that is crucial to the existence of living organisms, and that has many important industrial applications. The atomic number of carbon is 6; the element is in group 14 (or IVa) of the periodic table.
Properties The atomic weight of carbon is 12.01115. Three forms of elemental carbon that occur in nature-diamond, graphite, and amorphous carbon-are solids with extremely high melting points and are insoluble in all solvents at ordinary temperatures. The physical properties of the three forms differ widely because of the differences in crystalline structure. In diamond, the hardest material known, each atom is linked to four other atoms in a three-dimensional framework, whereas graphite consists of weakly bonded plane layers of atoms that are arranged in hexagons.
Amorphous carbon is characterized by a very low degree of crystallinity. Pure amorphous carbon can be obtained by heating purified sugar at 900° C (1652° F) in the absence of air.
A fourth form of naturally occurring carbon is a whole class of fullerenes, the most well-known of which is Buckminsterfullerene.
Carbon has the unique ability to link with other carbon atoms to form complex chains and rings. This property leads to an almost infinite number of carbon compounds, the most common being those containing carbon and hydrogen. The first carbon compounds were identified in living matter in the beginning of the 19th century, and therefore the study of carbon compounds was called organic chemistry.
At normal temperatures carbon is characterized by a low reactivity. At high temperatures it reacts directly with most metals to form carbides, and with oxygen to form carbon monoxide (CO) and carbon dioxide (CO2). Carbon in the form of coke is used to remove oxygen from metal oxide ores in order to obtain the pure metal. Carbon also forms compounds with most of the nonmetallic elements, although some of these, such as carbon tetrachloride (CCl4) must be formed indirectly.
Occurrence Carbon is a widely distributed element in nature, although it makes up only about 0.025 per cent of the earth's crust. It occurs there mostly in the form of carbonates. Carbon dioxide is an important constituent of the atmosphere and is the main source of carbon incorporated in living matter. Plants, using photosynthesis, convert carbon dioxide into organic carbon compounds, which are subsequently consumed by other organisms (See Carbon Cycle).
Amorphous carbon is found in varying degrees of purity in charcoal, coal, coke, carbon black, and lampblack. Lampblack, sometimes incorrectly called carbon black, is made by burning liquid hydrocarbons, such as kerosine, with an insufficient quantity of air, producing a smoky flame. The smoke or soot is collected in a separate chamber. For a long time lampblack was used as a black pigment in inks and paints, but it has been replaced by carbon black, which is composed of finer particles. Carbon black, also called gas black, is produced by incomplete combustion of natural gas and is mainly used as a filler and reinforcing agent for rubber.
Scientific Applications The most common isotope of carbon is carbon-12; in 1961 this isotope was chosen to replace the isotope oxygen-16 as the standard for atomic weights, and was assigned the atomic weight of 12.
The isotopes carbon-13 and carbon-14 are used extensively as isotopic tracers in biochemical research. Carbon-14 is also used in the technique called radiocarbon dating (See Dating Methods), which permits the estimation of the age of fossils and other organic materials. Carbon-14 is continuously produced in the atmosphere by cosmic rays and is incorporated into all living matter. As carbon-14 decays, with a half-life of 5,760 years, the proportion of carbon-14 to carbon-12 in a given specimen is a measure of its approximate age.
"Carbon," Microsoft(R) Encarta(R) 97 Encyclopedia. (c) 1993-1996 Microsoft Corporation. All rights reserved.
name::
* McsEngl.chmElry.6-Carbon-C!⇒chmElrC6,
* McsEngl.chmElry.Carbon-C6!⇒chmElrC6,
* McsEngl.chmElry.C6-Carbon!⇒chmElrC6,
* McsEngl.chmElrC6,
* McsEngl.Carbon-C6-chmElry!⇒chmElrC6,
* McsEngl.C6-Carbon-chmElry!⇒chmElrC6,
====== langoGreek:
* McsElln.Άνθρακας-C6,
name::
* McsEngl.mtrlAtom.Carbon!⇒atomCarbon,
* McsEngl.Carbon-atom!⇒atomCarbon,
* McsEngl.atomCarbon,
* McsEngl.atomC6!⇒atomCarbon,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.58-Cerium-Ce!⇒chmElrCe58,
* McsEngl.chmElry.Cerium-Ce58!⇒chmElrCe58,
* McsEngl.chmElry.Ce58-Cerium!⇒chmElrCe58,
* McsEngl.chmElrCe58!=Cerium,
* McsEngl.Cerium-Ce58-chmElry!⇒chmElrCe58,
* McsEngl.Ce58-Cerium-chmElry!⇒chmElrCe58,
====== langoGreek:
* McsElln.Δημήτριο-Ce58,
name::
* McsEngl.mtrlAtom.Cerium!⇒atomCerium,
* McsEngl.Cerium-atom!⇒atomCerium,
* McsEngl.atomCerium,
* McsEngl.atomCe58!⇒atomCerium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.17-Chlorine-Cl!⇒chmElrCl17,
* McsEngl.chmElry.Chlorine-Cl17!⇒chmElrCl17,
* McsEngl.chmElry.Cl17-Chlorine!⇒chmElrCl17,
* McsEngl.chmElrCl17!=Chlorine,
* McsEngl.Chlorine-Cl17-chmElry!⇒chmElrCl17,
* McsEngl.Cl17-Chlorine-chmElry!⇒chmElrCl17,
====== langoGreek:
* McsElln.χλώριο-Cl17,
name::
* McsEngl.mtrlAtom.Chlorine!⇒atomChlorine,
* McsEngl.Chlorine-atom!⇒atomChlorine,
* McsEngl.atomChlorine,
* McsEngl.atomCl17!⇒atomChlorine,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.24-Chromium-Cr!⇒chmElrCr24,
* McsEngl.chmElry.Chromium-Cr24!⇒chmElrCr24,
* McsEngl.chmElry.Cr24-Chromium!⇒chmElrCr24,
* McsEngl.chmElrCr24!=Chromium,
* McsEngl.Chromium-Cr24-chmElry!⇒chmElrCr24,
* McsEngl.Cr24-Chromium-chmElry!⇒chmElrCr24,
====== langoGreek:
* McsElln.Χρώμιο-Cr24,
name::
* McsEngl.mtrlAtom.Chromium!⇒atomChromium,
* McsEngl.Chromium-atom!⇒atomChromium,
* McsEngl.atomChromium,
* McsEngl.atomCr24!⇒atomChromium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.27-Cobalt-Co!⇒chmElrCo27,
* McsEngl.chmElry.Cobalt-Co27!⇒chmElrCo27,
* McsEngl.chmElry.Co27-Cobalt!⇒chmElrCo27,
* McsEngl.chmElrCo27!=Cobalt,
* McsEngl.Cobalt-Co27-chmElry!⇒chmElrCo27,
* McsEngl.Co27-Cobalt-chmElry!⇒chmElrCo27,
====== langoGreek:
* McsElln.Κοβάλτιο-Co27,
name::
* McsEngl.mtrlAtom.Cobalt!⇒atomCobalt,
* McsEngl.Cobalt-atom!⇒atomCobalt,
* McsEngl.atomCobalt,
* McsEngl.atomCo27!⇒atomCobalt,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.29-Copper-Cu!⇒chmElrCu29,
* McsEngl.chmElry.Copper-Cu29!⇒chmElrCu29,
* McsEngl.chmElry.Cu29-Copper!⇒chmElrCu29,
* McsEngl.chmElrCu29!=Copper,
* McsEngl.Copper-Cu29-chmElry!⇒chmElrCu29,
* McsEngl.Cu29-Copper-chmElry!⇒chmElrCu29,
====== langoGreek:
* McsElln.Χαλκός-Cu29!=chmElrCu29,
description::
"Copper toxicity refers to the consequences of an excess of copper in the body. Copper toxicity can occur from eating acid foods cooked in uncoated copper cookware, or from exposure to excess copper in drinking water or other environmental sources."
[http://en.wikipedia.org/wiki/Copper_toxicity]
name::
* McsEngl.mtrlAtom.Copper!⇒atomCopper,
* McsEngl.Copper-atom!⇒atomCopper,
* McsEngl.atomCopper,
* McsEngl.atomCu29!⇒atomCopper,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.112-Copernicium-Cn!⇒chmElrCn112,
* McsEngl.chmElry.Copernicium-Cn112!⇒chmElrCn112,
* McsEngl.chmElry.Cn112-Copernicium!⇒chmElrCn112,
* McsEngl.chmElrCn112!=Copernicium,
* McsEngl.Copernicium-Cn112-chmElry!⇒chmElrCn112,
* McsEngl.Cn112-Copernicium-chmElry!⇒chmElrCn112,
====== langoGreek:
* McsElln.Κοπερνίκιο-Cn112,
name::
* McsEngl.mtrlAtom.Copernicium!⇒atomCopernicium,
* McsEngl.Copernicium-atom!⇒atomCopernicium,
* McsEngl.atomCopernicium,
* McsEngl.atomCn112!⇒atomCopernicium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.96-Curium-Cm!⇒chmElrCm96,
* McsEngl.chmElry.Curium-Cm96!⇒chmElrCm96,
* McsEngl.chmElry.Cm96-Curium!⇒chmElrCm96,
* McsEngl.chmElrCm96!=Curium,
* McsEngl.Curium-Cm96-chmElry!⇒chmElrCm96,
* McsEngl.Cm96-Curium-chmElry!⇒chmElrCm96,
====== langoGreek:
* McsElln.Κιούριο-Cm96,
name::
* McsEngl.mtrlAtom.Curium!⇒atomCurium,
* McsEngl.Curium-atom!⇒atomCurium,
* McsEngl.atomCurium,
* McsEngl.atomCm96!⇒atomCurium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.110-Darmstadtium-Ds!⇒chmElrDs110,
* McsEngl.chmElry.Darmstadtium-Ds110!⇒chmElrDs110,
* McsEngl.chmElry.Ds110-Darmstadtium!⇒chmElrDs110,
* McsEngl.chmElrDs110!=Darmstadtium,
* McsEngl.Darmstadtium-Ds110-chmElry!⇒chmElrDs110,
* McsEngl.Ds110-Darmstadtium-chmElry!⇒chmElrDs110,
====== langoGreek:
* McsElln.Νταρμστάντιο-Ds110,
name::
* McsEngl.mtrlAtom.Darmstadtium!⇒atomDarmstadtium,
* McsEngl.Darmstadtium-atom!⇒atomDarmstadtium,
* McsEngl.atomDarmstadtium,
* McsEngl.atomDs110!⇒atomDarmstadtium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.105-Dubnium-Db!⇒chmElrDb105,
* McsEngl.chmElry.Dubnium-Db105!⇒chmElrDb105,
* McsEngl.chmElry.Db105-Dubnium!⇒chmElrDb105,
* McsEngl.chmElrDb105!=Dubnium,
* McsEngl.Dubnium-Db105-chmElry!⇒chmElrDb105,
* McsEngl.Db105-Dubnium-chmElry!⇒chmElrDb105,
====== langoGreek:
* McsElln.Ντούμπνιο-Db105,
name::
* McsEngl.mtrlAtom.Dubnium!⇒atomDubnium,
* McsEngl.Dubnium-atom!⇒atomDubnium,
* McsEngl.atomDubnium,
* McsEngl.atomDb105!⇒atomDubnium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.66-Dysprosium-Dy!⇒chmElrDy66,
* McsEngl.chmElry.Dysprosium-Dy66!⇒chmElrDy66,
* McsEngl.chmElry.Dy66-Dysprosium!⇒chmElrDy66,
* McsEngl.chmElrDy66!=Dysprosium,
* McsEngl.Dysprosium-Dy66-chmElry!⇒chmElrDy66,
* McsEngl.Dy66-Dysprosium-chmElry!⇒chmElrDy66,
====== langoGreek:
* McsElln.Δυσπρόσιο-Dy66,
name::
* McsEngl.mtrlAtom.Dysprosium!⇒atomDysprosium,
* McsEngl.Dysprosium-atom!⇒atomDysprosium,
* McsEngl.atomDysprosium,
* McsEngl.atomDy66!⇒atomDysprosium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.99-Einsteinium-Es!⇒chmElrEs99,
* McsEngl.chmElry.Einsteinium-Es99!⇒chmElrEs99,
* McsEngl.chmElry.Es99-Einsteinium!⇒chmElrEs99,
* McsEngl.chmElrEs99!=Einsteinium,
* McsEngl.Einsteinium-Es99-chmElry!⇒chmElrEs99,
* McsEngl.Es99-Einsteinium-chmElry!⇒chmElrEs99,
====== langoGreek:
* McsElln.Αϊνσταΐνιο-Es99,
name::
* McsEngl.mtrlAtom.Einsteinium!⇒atomEinsteinium,
* McsEngl.Einsteinium-atom!⇒atomEinsteinium,
* McsEngl.atomEinsteinium,
* McsEngl.atomEs99!⇒atomEinsteinium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.68-Erbium-Er!⇒chmElrEr68,
* McsEngl.chmElry.Erbium-Er68!⇒chmElrEr68,
* McsEngl.chmElry.Er68-Erbium!⇒chmElrEr68,
* McsEngl.chmElrEr68!=Erbium,
* McsEngl.Erbium-Er68-chmElry!⇒chmElrEr68,
* McsEngl.Er68-Erbium-chmElry!⇒chmElrEr68,
====== langoGreek:
* McsElln.Έρβιο-Er68,
name::
* McsEngl.mtrlAtom.Erbium!⇒atomErbium,
* McsEngl.Erbium-atom!⇒atomErbium,
* McsEngl.atomErbium,
* McsEngl.atomEr68!⇒atomErbium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.63-Europium-Eu!⇒chmElrEu63,
* McsEngl.chmElry.Europium-Eu63!⇒chmElrEu63,
* McsEngl.chmElry.Eu63-Europium!⇒chmElrEu63,
* McsEngl.chmElrEu63!=Europium,
* McsEngl.Europium-Eu63-chmElry!⇒chmElrEu63,
* McsEngl.Eu63-Europium-chmElry!⇒chmElrEu63,
====== langoGreek:
* McsElln.Ευρώπιο-Eu63,
name::
* McsEngl.mtrlAtom.Europium!⇒atomEuropium,
* McsEngl.Europium-atom!⇒atomEuropium,
* McsEngl.atomEuropium,
* McsEngl.atomEu63!⇒atomEuropium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.100-Fermium-Fm!⇒chmElrFm100,
* McsEngl.chmElry.Fermium-Fm100!⇒chmElrFm100,
* McsEngl.chmElry.Fm100-Fermium!⇒chmElrFm100,
* McsEngl.chmElrFm100!=Fermium,
* McsEngl.Fermium-Fm100-chmElry!⇒chmElrFm100,
* McsEngl.Fm100-Fermium-chmElry!⇒chmElrFm100,
====== langoGreek:
* McsElln.Φέρμιο-Fm100,
name::
* McsEngl.mtrlAtom.Fermium!⇒atomFermium,
* McsEngl.Fermium-atom!⇒atomFermium,
* McsEngl.atomFermium,
* McsEngl.atomFm100!⇒atomFermium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.9-Fluorine-F!⇒chmElrF9,
* McsEngl.chmElry.Fluorine-F9!⇒chmElrF9,
* McsEngl.chmElry.F9-Fluorine!⇒chmElrF9,
* McsEngl.chmElrF9,
* McsEngl.Fluorine-F9-chmElry!⇒chmElrF9,
* McsEngl.F9-Fluorine-chmElry!⇒chmElrF9,
====== langoGreek:
* McsElln.Φθόριο-F9,
name::
* McsEngl.mtrlAtom.Fluorine!⇒atomFluorine,
* McsEngl.Fluorine-atom!⇒atomFluorine,
* McsEngl.atomFluorine,
* McsEngl.atomF9!⇒atomFluorine,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.87-Francium-Fr!⇒chmElrFr87,
* McsEngl.chmElry.Francium-Fr87!⇒chmElrFr87,
* McsEngl.chmElry.Fr87-Francium!⇒chmElrFr87,
* McsEngl.chmElrFr87!=Francium,
* McsEngl.Francium-Fr87-chmElry!⇒chmElrFr87,
* McsEngl.Fr87-Francium-chmElry!⇒chmElrFr87,
====== langoGreek:
* McsElln.Φράγκιο-Fr87,
name::
* McsEngl.mtrlAtom.Francium!⇒atomFrancium,
* McsEngl.Francium-atom!⇒atomFrancium,
* McsEngl.atomFrancium,
* McsEngl.atomFr87!⇒atomFrancium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.64-Gadolinium-Gd!⇒chmElrGd64,
* McsEngl.chmElry.Gadolinium-Gd64!⇒chmElrGd64,
* McsEngl.chmElry.Gd64-Gadolinium!⇒chmElrGd64,
* McsEngl.chmElrGd64!=Gadolinium,
* McsEngl.Gadolinium-Gd64-chmElry!⇒chmElrGd64,
* McsEngl.Gd64-Gadolinium-chmElry!⇒chmElrGd64,
====== langoGreek:
* McsElln.Γαδολίνιο-Gd64,
name::
* McsEngl.mtrlAtom.Gadolinium!⇒atomGadolinium,
* McsEngl.Gadolinium-atom!⇒atomGadolinium,
* McsEngl.atomGadolinium,
* McsEngl.atomGd64!⇒atomGadolinium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.31-Gallium-Ga!⇒chmElrGa31,
* McsEngl.chmElry.Gallium-Ga31!⇒chmElrGa31,
* McsEngl.chmElry.Ga31-Gallium!⇒chmElrGa31,
* McsEngl.chmElrGa31!=Gallium,
* McsEngl.Gallium-Ga31-chmElry!⇒chmElrGa31,
* McsEngl.Ga31-Gallium-chmElry!⇒chmElrGa31,
====== langoGreek:
* McsElln.Γάλλιο-Ga31,
name::
* McsEngl.mtrlAtom.Gallium!⇒atomGallium,
* McsEngl.Gallium-atom!⇒atomGallium,
* McsEngl.atomGallium,
* McsEngl.atomGa31!⇒atomGallium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.32-Germanium-Ge!⇒chmElrGe32,
* McsEngl.chmElry.Germanium-Ge32!⇒chmElrGe32,
* McsEngl.chmElry.Ge32-Germanium!⇒chmElrGe32,
* McsEngl.chmElrGe32!=Germanium,
* McsEngl.Germanium-Ge32-chmElry!⇒chmElrGe32,
* McsEngl.Ge32-Germanium-chmElry!⇒chmElrGe32,
====== langoGreek:
* McsElln.Γερμάνιο-Ge32,
name::
* McsEngl.mtrlAtom.Germanium!⇒atomGermanium,
* McsEngl.Germanium-atom!⇒atomGermanium,
* McsEngl.atomGermanium,
* McsEngl.atomGe32!⇒atomGermanium,
generic-tree::
* material-atom,
description::
"On Earth, gold is found in ores in rock formed from the Precambrian time onward.[65] It most often occurs as a native metal, typically in a metal solid solution with silver (i.e. as a gold silver alloy). Such alloys usually have a silver content of 8–10%. Electrum is elemental gold with more than 20% silver. Electrum's color runs from golden-silvery to silvery, dependent upon the silver content. The more silver, the lower the specific gravity."
[{2020-12-28} https://en.wikipedia.org/wiki/Gold]
name::
* McsEngl.chmElry.79-Gold-Au!⇒chmElrAu79,
* McsEngl.chmElry.Gold-Au79!⇒chmElrAu79,
* McsEngl.chmElry.Au79-Gold!⇒chmElrAu79,
* McsEngl.chmElrAu79!=Gold,
* McsEngl.Gold-Mcs-chmElry!⇒chmElrAu79,
* McsEngl.Au79-Gold-chmElry!⇒chmElrAu79,
====== langoGreek:
* McsElln.Χρυσός-Au79!ο,
description::
* https://www.goldeneaglecoin.com/Guide/value-of-all-the-gold-in-the-world,
description::
"⛏️ China produced the most gold in 2023.
Gold production in 2023:
🇨🇳 China: 370 tonnes
🇷🇺 Russia: 310
🇦🇺 Australia: 310
🇨🇦 Canada: 200
🇺🇸 United States: 170
🇰🇿 Kazakhstan: 130
🇲🇽 Mexico: 120
🇮🇩 Indonesia: 110
🇿🇦 South Africa: 100
🇺🇿 Uzbekistan: 100
🇬🇭 Ghana: 90
🇵🇪 Peru: 90
🇧🇷 Brazil: 60
🇧🇫 Burkina Faso: 60
🇲🇱 Mali: 60
🇹🇿 Tanzania: 60
According to USGS"
[{2024-04-28 retrieved} https://twitter.com/stats_feed/status/1784492159640420439]
name::
* McsEngl.mtrlAtom.Gold!⇒atomGold,
* McsEngl.Gold-atom!⇒atomGold,
* McsEngl.atomGold,
* McsEngl.atomAu79!⇒atomGold,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.72-Hafnium-Hf!⇒chmElrHf72,
* McsEngl.chmElry.Hafnium-Hf72!⇒chmElrHf72,
* McsEngl.chmElry.Hf72-Hafnium!⇒chmElrHf72,
* McsEngl.chmElrHf72!=Hafnium,
* McsEngl.Hafnium-Hf72-chmElry!⇒chmElrHf72,
* McsEngl.Hf72-Hafnium-chmElry!⇒chmElrHf72,
====== langoGreek:
* McsElln.Άφνιο-Hf72,
name::
* McsEngl.mtrlAtom.Hafnium!⇒atomHafnium,
* McsEngl.Hafnium-atom!⇒atomHafnium,
* McsEngl.atomHafnium,
* McsEngl.atomHf72!⇒atomHafnium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.108-Hassium-Hs!⇒chmElrHs108,
* McsEngl.chmElry.Hassium-Hs108!⇒chmElrHs108,
* McsEngl.chmElry.Hs108-Hassium!⇒chmElrHs108,
* McsEngl.chmElrHs108!=Hassium,
* McsEngl.Hassium-Hs108-chmElry!⇒chmElrHs108,
* McsEngl.Hs108-Hassium-chmElry!⇒chmElrHs108,
====== langoGreek:
* McsElln.Χάσιο-Hs108,
name::
* McsEngl.mtrlAtom.Hassium!⇒atomHassium,
* McsEngl.Hassium-atom!⇒atomHassium,
* McsEngl.atomHassium,
* McsEngl.atomHs108!⇒atomHassium,
generic-tree::
* material-atom,
description::
"Helium (from Greek: ἥλιος, romanized: Helios, lit. 'Sun') is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas, the first in the noble gas group in the periodic table.[a] Its boiling point is the lowest among all the elements. Helium is the second lightest and second most abundant element in the observable universe (hydrogen is the lightest and most abundant). It is present at about 24% of the total elemental mass, which is more than 12 times the mass of all the heavier elements combined. Its abundance is similar to this in both the Sun and in Jupiter. This is due to the very high nuclear binding energy (per nucleon) of helium-4, with respect to the next three elements after helium. This helium-4 binding energy also accounts for why it is a product of both nuclear fusion and radioactive decay. Most helium in the universe is helium-4, the vast majority of which was formed during the Big Bang. Large amounts of new helium are being created by nuclear fusion of hydrogen in stars."
[{2020-07-31} https://en.wikipedia.org/wiki/Helium]
name::
* McsEngl.chmElry.2-Helium-He!⇒chmElrHe2,
* McsEngl.chmElry.Helium-He2!⇒chmElrHe2,
* McsEngl.chmElry.He2-Helium!⇒chmElrHe2,
* McsEngl.chmElrHe2!=Helium,
* McsEngl.Helium-He2-chmElry!⇒chmElrHe2,
* McsEngl.He2-Helium-chmElry!⇒chmElrHe2,
====== langoGreek:
* McsElln.Ήλιο-He2,
name::
* McsEngl.Helium-atom!⇒atomHelium,
* McsEngl.atomHelium,
* McsEngl.atomHe2!⇒atomHelium,
* McsEngl.chmElrHe2'atom!⇒atomHelium,
* McsEngl.mtrlAtom.Helium!⇒atomHelium,
generic-tree::
* material-atom,
description::
"Is Helium a Precious Resource?
The gas in party balloons is also essential for MRI scanners
When French astronomer Pierre Janssen looked through his spectroscope on August 18, 1868, he became the first person to observe helium. If dire warnings come true, we could be the last.
David Cole-Hamilton, a professor of chemistry at the University of St. Andrews in Scotland, is sounding an urgent warning about our dwindling resources of this colorless, odorless, inert gas. He is urging people to go without helium-filled balloons at parties to help prevent supplies from vanishing within a decade.
Helium is essential for cooling the superconducting magnets in MRI scanners, and it's frequently used in other applications of cryogenics, as a component of breathing gas for deep-sea diving, and as a lifting gas in blimps. Although helium is the second-most abundant element in the universe, it cannot be manufactured on Earth. Instead, we must wait for it to be created through ..."
[{2020-07-31} learn@wisegeeknewsletter.com]
name::
* McsEngl.chmElry.67-Holmium-Ho!⇒chmElrHo67,
* McsEngl.chmElry.Holmium-Ho67!⇒chmElrHo67,
* McsEngl.chmElry.Ho67-Holmium!⇒chmElrHo67,
* McsEngl.chmElrHo67!=Holmium,
* McsEngl.Holmium-Ho67-chmElry!⇒chmElrHo67,
* McsEngl.Ho67-Holmium-chmElry!⇒chmElrHo67,
====== langoGreek:
* McsElln.Όλμιο-Ho67,
name::
* McsEngl.mtrlAtom.Holmium!⇒atomHolmium,
* McsEngl.Holmium-atom!⇒atomHolmium,
* McsEngl.atomHolmium,
* McsEngl.atomHo67!⇒atomHolmium,
generic-tree::
* material-atom,
description::
Hydrogen (Greek, "water former"), symbol H, reactive, colourless, odourless, and tasteless gaseous element. The atomic number of hydrogen is 1. The element is usually classed in group 1 (or Ia) of the periodic table.
Hydrogen was confused with other gases until the British chemist Henry Cavendish demonstrated in 1766 that it was evolved by the action of sulphuric acid on metals and also showed at a later date that it was an independent substance that combined with oxygen to form water. The British chemist Joseph Priestley named the gas "inflammable air" in 1781, and the French chemist Antoine Laurent Lavoisier renamed it hydrogen.
Properties and Occurrence Like most gaseous elements, hydrogen is diatomic (its molecules contain two atoms), but it dissociates into free atoms at high temperatures. Hydrogen has a lower boiling point and melting point than any other substance except helium; hydrogen melts at -259.2° C (-434.56° F) and boils at -252.77° C (-422.99° F). At 0° C (32° F) and 1 atmosphere pressure, hydrogen is a gas with a density of 0.089 g/litre. The atomic weight of hydrogen is 1.007. Liquid hydrogen, first obtained by the British chemist Sir James Dewar in 1898 (See Cryogenics), is colourless (but light blue in thick layers) with relative density 0.070. When allowed to evaporate rapidly under reduced pressure, it freezes into a colourless solid.
Hydrogen gas is a mixture of two different forms, orthohydrogen (where the nuclei spin in parallel) and parahydrogen (where the nuclei spin antiparallel). Ordinary hydrogen contains about three-fourths of the ortho form and one-fourth of the para form. The melting point and boiling point of the two forms differ slightly from those of ordinary hydrogen. Practically pure parahydrogen is obtained by adsorbing ordinary hydrogen on charcoal at about -225° C (-373° F).
Hydrogen is known to exist in three isotopes. The nucleus of each atom of ordinary hydrogen is composed of one proton. Deuterium, present in ordinary hydrogen to the extent of 0.02 per cent, contains one proton and one neutron in the nucleus of each atom and has an atomic mass of two. Tritium, an unstable, radioactive isotope, contains one proton and two neutrons in the nucleus of each atom, and has an atomic mass of three.
Free hydrogen is found only in very small traces in the atmosphere, but solar and stellar spectra show that it is abundant in the sun and other stars, and is, in fact, the most common element in the universe. In combination with other elements it is widely distributed on the earth, where the most important and abundant compound of hydrogen is water, H2O. It is a component of all the constituents of living matter as well as of many minerals. It forms an essential part of all hydrocarbons and a vast variety of other organic substances. All acids contain hydrogen; the distinguishing characteristic of an acid is its dissociation, upon going into solution, to yield hydrogen ions.
Uses Hydrogen reacts with many nonmetals. It combines with nitrogen in the presence of a catalyst to form ammonia (See Nitrogen Fixation), with sulphur to form hydrogen sulphide, with chlorine to form hydrogen chloride, and with oxygen to form water. The reaction of oxygen and hydrogen takes place at room temperature only in the presence of a catalyst such as finely divided platinum. When hydrogen is mixed with air or oxygen and ignited, the mixture explodes. Hydrogen also combines with some metals, such as sodium and lithium, to form hydrides. It acts as a reducing agent on metallic oxides, such as copper oxide, removing the oxygen and leaving the metal in a free state. Hydrogen reacts with unsaturated organic compounds to form corresponding saturated compounds.
Hydrogen is prepared in the laboratory by the action of dilute acid on metals, such as zinc, and by the electrolysis of water. Large quantities of the gas are produced industrially from various fuel gases. Hydrogen is separated from water gas, natural gas, and coal gas either by liquefaction of the other components of the gas or by catalytic conversion of the carbon monoxide to carbon dioxide, which is easily removed.
In many electrolysis reactions (See Electrochemistry) hydrogen is an important by-product. Enormous quantities of hydrogen are used in the manufacture of ammonia and in the synthesis of methyl alcohol. The hydrogenation of oils to produce edible fats, of coal to form synthetic petroleum, and of petroleum oils to enrich the petrol fraction requires large amounts of hydrogen.
The lightest in weight of all gases, hydrogen has been used for the inflation of balloons and dirigibles. It ignites very easily, however, and several airships, including the Hindenburg, have been destroyed by hydrogen fires. Helium, which has 92 per cent of the lifting power of hydrogen and is not inflammable, is used whenever possible. Hydrogen is usually stored in steel cylinders at pressures of 120 to 150 atmospheres. Hydrogen is also used in high-temperature torches for cutting, melting, and welding metals.
"Hydrogen," Microsoft(R) Encarta(R) 97 Encyclopedia. (c) 1993-1996 Microsoft Corporation. All rights reserved.
name::
* McsEngl.chmElry.1-Hydrogen-H!⇒chmElrH1,
* McsEngl.chmElry.Hydrogen-H1!⇒chmElrH1,
* McsEngl.chmElry.H1-Hydrogen!⇒chmElrH1,
* McsEngl.chmElrH1,
* McsEngl.Hydrogen-H1-chmElry!⇒chmElrH1,
* McsEngl.H1-Hydrogen-chmElry!⇒chmElrH1,
====== langoGreek:
* McsElln.Υδρογόνο-H1,
name::
* McsEngl.mtrlAtom.Hydrogen!⇒atomHydrogen,
* McsEngl.Hydrogen-atom!⇒atomHydrogen,
* McsEngl.atomHydrogen,
* McsEngl.atomH1!⇒atomHydrogen,
generic-tree::
* material-atom,
description::
Το υδρογόνο μπορεί να χρησιμοποιηθεί ως καύσιμο για αυτοκίνητα και σκάφη, για στατική παραγωγή ενέργειας σε κτίρια, αλλά και ως μέσο αποθήκευσης πλεονάσματος ενέργειας.
[http://www.naftemporiki.gr/story/1083712/xrisi-anthraka-gia-tin-paragogi-udrogonou-apo-nero]
description::
* http://www.naftemporiki.gr/story/1083712/xrisi-anthraka-gia-tin-paragogi-udrogonou-apo-nero,
name::
* McsEngl.chmElry.49-Indium-In!⇒chmElrIn49,
* McsEngl.chmElry.Indium-In49!⇒chmElrIn49,
* McsEngl.chmElry.In49-Indium!⇒chmElrIn49,
* McsEngl.chmElrIn49!=Indium,
* McsEngl.Indium-In49-chmElry!⇒chmElrIn49,
* McsEngl.In49-Indium-chmElry!⇒chmElrIn49,
====== langoGreek:
* McsElln.Ίνδιο-In49,
name::
* McsEngl.mtrlAtom.Indium!⇒atomIndium,
* McsEngl.Indium-atom!⇒atomIndium,
* McsEngl.atomIndium,
* McsEngl.atomIn49!⇒atomIndium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.53-Iodine-I!⇒chmElrI53,
* McsEngl.chmElry.Iodine-I53!⇒chmElrI53,
* McsEngl.chmElry.I53-Iodine!⇒chmElrI53,
* McsEngl.chmElrI53,
* McsEngl.Iodine-I53-chmElry!⇒chmElrI53,
* McsEngl.I53-Iodine-chmElry!⇒chmElrI53,
====== langoGreek:
* McsElln.Ιώδιο-I53,
name::
* McsEngl.mtrlAtom.Iodine!⇒atomIodine,
* McsEngl.Iodine-atom!⇒atomIodine,
* McsEngl.atomIodine,
* McsEngl.atomI53!⇒atomIodine,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.77-Iridium-Ir!⇒chmElrIr77,
* McsEngl.chmElry.Iridium-Ir77!⇒chmElrIr77,
* McsEngl.chmElry.Ir77-Iridium!⇒chmElrIr77,
* McsEngl.chmElrIr77!=Iridium,
* McsEngl.Iridium-Ir77-chmElry!⇒chmElrIr77,
* McsEngl.Ir77-Iridium-chmElry!⇒chmElrIr77,
====== langoGreek:
* McsElln.Ιρίδιο-Ir77,
name::
* McsEngl.mtrlAtom.Iridium!⇒atomIridium,
* McsEngl.Iridium-atom!⇒atomIridium,
* McsEngl.atomIridium,
* McsEngl.atomIr77!⇒atomIridium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.26-Iron-Fe!⇒chmElrFe26,
* McsEngl.chmElry.Iron-Fe26!⇒chmElrFe26,
* McsEngl.chmElry.Fe26-Iron!⇒chmElrFe26,
* McsEngl.chmElrFe26!=Iron,
* McsEngl.Iron-Fe26-chmElry!⇒chmElrFe26,
* McsEngl.Fe26-Iron-chmElry!⇒chmElrFe26,
====== langoGreek:
* McsElln.Σίδηρος-Fe26,
name::
* McsEngl.mtrlAtom.Iron!⇒atomIron,
* McsEngl.Iron-atom!⇒atomIron,
* McsEngl.atomIron,
* McsEngl.atomFe26!⇒atomIron,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.36-Krypton-Kr!⇒chmElrKr36,
* McsEngl.chmElry.Krypton-Kr36!⇒chmElrKr36,
* McsEngl.chmElry.Kr36-Krypton!⇒chmElrKr36,
* McsEngl.chmElrKr36!=Krypton,
* McsEngl.Krypton-Kr36-chmElry!⇒chmElrKr36,
* McsEngl.Kr36-Krypton-chmElry!⇒chmElrKr36,
====== langoGreek:
* McsElln.Κρύπτο-Kr36,
name::
* McsEngl.mtrlAtom.Krypton!⇒atomKrypton,
* McsEngl.Krypton-atom!⇒atomKrypton,
* McsEngl.atomKrypton,
* McsEngl.atomKr36!⇒atomKrypton,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.57-Lanthanum-La!⇒chmElrLa57,
* McsEngl.chmElry.Lanthanum-La57!⇒chmElrLa57,
* McsEngl.chmElry.La57-Lanthanum!⇒chmElrLa57,
* McsEngl.chmElrLa57!=Lanthanum,
* McsEngl.Lanthanum-La57-chmElry!⇒chmElrLa57,
* McsEngl.La57-Lanthanum-chmElry!⇒chmElrLa57,
====== langoGreek:
* McsElln.Λανθάνιο-La57,
name::
* McsEngl.mtrlAtom.Lanthanum!⇒atomLanthanum,
* McsEngl.Lanthanum-atom!⇒atomLanthanum,
* McsEngl.atomLanthanum,
* McsEngl.atomLa57!⇒atomLanthanum,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.103-Lawrencium-Lr!⇒chmElrLr103,
* McsEngl.chmElry.Lawrencium-Lr103!⇒chmElrLr103,
* McsEngl.chmElry.Lr103-Lawrencium!⇒chmElrLr103,
* McsEngl.chmElrLr103!=Lawrencium,
* McsEngl.Lawrencium-Lr103-chmElry!⇒chmElrLr103,
* McsEngl.Lr103-Lawrencium-chmElry!⇒chmElrLr103,
====== langoGreek:
* McsElln.Λωρέτσιο-Lr103,
name::
* McsEngl.mtrlAtom.Lawrencium!⇒atomLawrencium,
* McsEngl.Lawrencium-atom!⇒atomLawrencium,
* McsEngl.atomLawrencium,
* McsEngl.atomLr103!⇒atomLawrencium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.82-Lead-Pb!⇒chmElrLead,
* McsEngl.chmElry.Lead-Pb82!⇒chmElrLead,
* McsEngl.chmElry.Pb82-Lead!⇒chmElrLead,
* McsEngl.chmElrLead,
* McsEngl.Lead-Pb82-chmElry!⇒chmElrLead,
* McsEngl.Pb82-Lead-chmElry!⇒chmElrLead,
====== langoGreek:
* McsElln.Μόλυβδος-Pb82!=chmElrLead,
name::
* McsEngl.mtrlAtom.Lead!⇒atomLead,
* McsEngl.Lead-atom!⇒atomLead,
* McsEngl.atomLead,
* McsEngl.atomPb82!⇒atomLead,
generic-tree::
* material-atom,
name::
* McsEngl.chmElrLead'toxicity,
* McsEngl.chmElrLead'att001-toxicity,
description::
What Are the Ongoing Consequences of the Water Crisis in Flint, Michigan?
The percentage of special needs students in Flint, Mich. has risen by 56% since the 2014 lead contamination crisis.
Flint, Michigan, has faced more than its fair share of woes in recent years, from high unemployment rates and population loss due in large part to downsizing by its chief employer, General Motors, to crime rates that consistently place Flint on many "most dangerous cities" lists. Now, even the youngest Flint residents are facing a crisis. According to recent statistics, at least 20 percent of public school students in Flint are eligible for special education status. Health officials believe there is a direct connection between the increased number of special needs children and the dangerous levels of lead discovered in the city's water supply in 2014. The problem is compounded by financial troubles. School districts are understaffed and underfunded, at least partly by the loss of a tax base, yet the federal government requires adequate services for children in special education. The percentage of special needs students in Flint has increased by 56% in the years since the water crisis, climbing from 13.1% for the 2012-13 school year to 20.5% percent of all students in 2018-19. While many families have been pulling up roots to get away from the danger, others are beset by poverty and looking to the city, state and federal government for help.
[{2020-05-03} http://www.wisegeek.com/what-are-the-ongoing-consequences-of-the-water-crisis-in-flint-michigan.htm?m]
name::
* McsEngl.chmElry.3-Lithium-Li!⇒chmElrLi3,
* McsEngl.chmElry.Lithium-Li3!⇒chmElrLi3,
* McsEngl.chmElry.Li3-Lithium!⇒chmElrLi3,
* McsEngl.chmElrLi3!=Lithium,
* McsEngl.Lithium-Li3-chmElry!⇒chmElrLi3,
* McsEngl.Li3-Lithium-chmElry!⇒chmElrLi3,
====== langoGreek:
* McsElln.Λίθιο-Li3,
name::
* McsEngl.mtrlAtom.Lithium!⇒atomLithium,
* McsEngl.Lithium-atom!⇒atomLithium,
* McsEngl.atomLithium,
* McsEngl.atomLi3!⇒atomLithium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.71-Lutetium-Lu!⇒chmElrLu71,
* McsEngl.chmElry.Lutetium-Lu71!⇒chmElrLu71,
* McsEngl.chmElry.Lu71-Lutetium!⇒chmElrLu71,
* McsEngl.chmElrLu71!=Lutetium,
* McsEngl.Lutetium-Lu71-chmElry!⇒chmElrLu71,
* McsEngl.Lu71-Lutetium-chmElry!⇒chmElrLu71,
====== langoGreek:
* McsElln.Λουτήτιο-Lu71,
name::
* McsEngl.mtrlAtom.Lutetium!⇒atomLutetium,
* McsEngl.Lutetium-atom!⇒atomLutetium,
* McsEngl.atomLutetium,
* McsEngl.atomLu71!⇒atomLutetium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.12-Magnesium-Mg!⇒chmElrMg12,
* McsEngl.chmElry.Magnesium-Mg12!⇒chmElrMg12,
* McsEngl.chmElry.Mg12-Magnesium!⇒chmElrMg12,
* McsEngl.chmElrMg12!=Magnesium,
* McsEngl.Magnesium-Mg12-chmElry!⇒chmElrMg12,
* McsEngl.Mg12-Magnesium-chmElry!⇒chmElrMg12,
====== langoGreek:
* McsElln.Μαγνήσιο-Mg12,
description::
Ηλιόσποροι: Σούπερ τροφή για έξτρα ηρεμία
ΑΘΗΝΑ 23/02/2014
Οι ηλιόσποροι αποτελούν αγαπημένο σνακ μικρών και μεγάλων. Η κατανάλωσή τους έχει πολλές φορές ταυτιστεί με την διοχέτευση της νευρικότητάς μας. Κι αυτό αποδίδεται στην ευεργετική επίδραση του μαγνησίου που περιέχουν.
Οι ηλιόσποροι είναι μια εξαιρετική πηγή μαγνησίου, με 30 γραμμάρια αυτών να παρέχουν περίπου το 30% της ημερήσιας απαίτησης μαγνησίου.
Το μαγνήσιο εκδηλώνει αντίθετες δράσεις από εκείνες του ασβεστίου, συμβάλλοντας έτσι στο έλεγχο του τόνου των νεύρων και των μυών.
Συγκεκριμένα, το μαγνήσιο μπλοκάρει τα κανάλια ασβεστίου εντός των νευρικών κυττάρων με αποτέλεσμα να αποτρέπει την αύξηση του ασβεστίου εντός αυτών και άρα την ενεργοποίησή τους.
Ουσιαστικά, το μαγνήσιο είναι εκείνο που διατηρεί τα νευρικά κύτταρα σε κατάσταση χαλάρωσης και ηρεμίας.
Ανεπαρκής πρόσληψη μαγνησίου μέσω της διατροφής μπορεί να οδηγήσει σε αύξηση της συχνότητας αυξομειώσεων της συγκέντρωσης του ασβεστίου εντός των νευρικών κυττάρων με αποτέλεσμα να αυξάνει αντίστοιχα και η συχνότητα διέγερσης των νεύρων.
Επίσης, η ανεπαρκής πρόσληψη μαγνησίου έχει συσχετιστεί με την εμφάνιση αρτηριακής υπέρτασης, μυϊκών σπασμών, ημικρανιών, μυϊκών κραμπών και γενικότερο αίσθημα κούρασης.
Έτσι, η κατανάλωση ηλιόσπορων μπορεί να εξασφαλίσει επαρκή πρόσληψη μαγνησίου και τα αντίστοιχα οφέλη.
Πηγή: neadiatrofis.gr
[http://www.nooz.gr/woman/iliosporoi-soiper-trofi-gia-ekstra-iremia]
name::
* McsEngl.mtrlAtom.Magnesium!⇒atomMagnesium,
* McsEngl.Magnesium-atom!⇒atomMagnesium,
* McsEngl.atomMagnesium,
* McsEngl.atomMg12!⇒atomMagnesium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.25-Manganese-Mn!⇒chmElrMn25,
* McsEngl.chmElry.Manganese-Mn25!⇒chmElrMn25,
* McsEngl.chmElry.Mn25-Manganese!⇒chmElrMn25,
* McsEngl.chmElrMn25!=Manganese,
* McsEngl.Manganese-Mn25-chmElry!⇒chmElrMn25,
* McsEngl.Mn25-Manganese-chmElry!⇒chmElrMn25,
====== langoGreek:
* McsElln.Μαγγάνιο-Mn25,
name::
* McsEngl.mtrlAtom.Manganese!⇒atomManganese,
* McsEngl.Manganese-atom!⇒atomManganese,
* McsEngl.atomManganese,
* McsEngl.atomMn25!⇒atomManganese,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.109-Meitnerium-Mt!⇒chmElrMt109,
* McsEngl.chmElry.Meitnerium-Mt109!⇒chmElrMt109,
* McsEngl.chmElry.Mt109-Meitnerium!⇒chmElrMt109,
* McsEngl.chmElrMt109!=Meitnerium,
* McsEngl.Meitnerium-Mt109-chmElry!⇒chmElrMt109,
* McsEngl.Mt109-Meitnerium-chmElry!⇒chmElrMt109,
====== langoGreek:
* McsElln.Μαϊτνέριο-Mt109,
name::
* McsEngl.mtrlAtom.Meitnerium!⇒atomMeitnerium,
* McsEngl.Meitnerium-atom!⇒atomMeitnerium,
* McsEngl.atomMeitnerium,
* McsEngl.atomMt109!⇒atomMeitnerium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.101-Mendelevium-Md!⇒chmElrMd101,
* McsEngl.chmElry.Mendelevium-Md101!⇒chmElrMd101,
* McsEngl.chmElry.Md101-Mendelevium!⇒chmElrMd101,
* McsEngl.chmElrMd101!=Mendelevium,
* McsEngl.Mendelevium-Md101-chmElry!⇒chmElrMd101,
* McsEngl.Md101-Mendelevium-chmElry!⇒chmElrMd101,
====== langoGreek:
* McsElln.Μεντελέβιο-Md101,
name::
* McsEngl.mtrlAtom.Mendelevium!⇒atomMendelevium,
* McsEngl.Mendelevium-atom!⇒atomMendelevium,
* McsEngl.atomMendelevium,
* McsEngl.atomMd101!⇒atomMendelevium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.80-Mercury-Hg!⇒chmElrHg80,
* McsEngl.chmElry.Mercury-Hg80!⇒chmElrHg80,
* McsEngl.chmElry.Hg80-Mercury!⇒chmElrHg80,
* McsEngl.chmElrHg80!=Mercury,
* McsEngl.Mercury-Hg80-chmElry!⇒chmElrHg80,
* McsEngl.Hg80-Mercury-chmElry!⇒chmElrHg80,
====== langoGreek:
* McsElln.Υδράργυρος-Hg80,
name::
* McsEngl.mtrlAtom.Mercury!⇒atomMercury,
* McsEngl.Mercury-atom!⇒atomMercury,
* McsEngl.atomMercury,
* McsEngl.atomHg80!⇒atomMercury,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.42-Molybdenum-Mo!⇒chmElrMo42,
* McsEngl.chmElry.Molybdenum-Mo42!⇒chmElrMo42,
* McsEngl.chmElry.Mo42-Molybdenum!⇒chmElrMo42,
* McsEngl.chmElrMo42!=Molybdenum,
* McsEngl.Molybdenum-Mo42-chmElry!⇒chmElrMo42,
* McsEngl.Mo42-Molybdenum-chmElry!⇒chmElrMo42,
====== langoGreek:
* McsElln.Μολυβδαίνιο-Mo42,
name::
* McsEngl.mtrlAtom.Molybdenum!⇒atomMolybdenum,
* McsEngl.Molybdenum-atom!⇒atomMolybdenum,
* McsEngl.atomMolybdenum,
* McsEngl.atomMo42!⇒atomMolybdenum,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.60-Neodymium-Nd!⇒chmElrNd60,
* McsEngl.chmElry.Neodymium-Nd60!⇒chmElrNd60,
* McsEngl.chmElry.Nd60-Neodymium!⇒chmElrNd60,
* McsEngl.chmElrNd60!=Neodymium,
* McsEngl.Neodymium-Nd60-chmElry!⇒chmElrNd60,
* McsEngl.Nd60-Neodymium-chmElry!⇒chmElrNd60,
====== langoGreek:
* McsElln.Νεοδύμιο-Nd60,
name::
* McsEngl.mtrlAtom.Neodymium!⇒atomNeodymium,
* McsEngl.Neodymium-atom!⇒atomNeodymium,
* McsEngl.atomNeodymium,
* McsEngl.atomNd60!⇒atomNeodymium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.10-Neon-Ne!⇒chmElrNe10,
* McsEngl.chmElry.Neon-Ne10!⇒chmElrNe10,
* McsEngl.chmElry.Ne10-Neon!⇒chmElrNe10,
* McsEngl.chmElrNe10!=Neon,
* McsEngl.Neon-Ne10-chmElry!⇒chmElrNe10,
* McsEngl.Ne10-Neon-chmElry!⇒chmElrNe10,
====== langoGreek:
* McsElln.Νέον-Ne10,
name::
* McsEngl.mtrlAtom.Neon!⇒atomNeon,
* McsEngl.Neon-atom!⇒atomNeon,
* McsEngl.atomNeon,
* McsEngl.atomNe10!⇒atomNeon,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.93-Neptunium-Np!⇒chmElrNp93,
* McsEngl.chmElry.Neptunium-Np93!⇒chmElrNp93,
* McsEngl.chmElry.Np93-Neptunium!⇒chmElrNp93,
* McsEngl.chmElrNp93!=Neptunium,
* McsEngl.Neptunium-Np93-chmElry!⇒chmElrNp93,
* McsEngl.Np93-Neptunium-chmElry!⇒chmElrNp93,
====== langoGreek:
* McsElln.Ποσειδώνιο-Np93,
name::
* McsEngl.mtrlAtom.Neptunium!⇒atomNeptunium,
* McsEngl.Neptunium-atom!⇒atomNeptunium,
* McsEngl.atomNeptunium,
* McsEngl.atomNp93!⇒atomNeptunium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.28-Nickel-Ni!⇒chmElrNi28,
* McsEngl.chmElry.Nickel-Ni28!⇒chmElrNi28,
* McsEngl.chmElry.Ni28-Nickel!⇒chmElrNi28,
* McsEngl.chmElrNi28!=Nickel,
* McsEngl.Nickel-Ni28-chmElry!⇒chmElrNi28,
* McsEngl.Ni28-Nickel-chmElry!⇒chmElrNi28,
====== langoGreek:
* McsElln.Νικέλιο-Ni28,
name::
* McsEngl.mtrlAtom.Nickel!⇒atomNickel,
* McsEngl.Nickel-atom!⇒atomNickel,
* McsEngl.atomNickel,
* McsEngl.atomNi28!⇒atomNickel,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.41-Niobium-Nb!⇒chmElrNb41,
* McsEngl.chmElry.Niobium-Nb41!⇒chmElrNb41,
* McsEngl.chmElry.Nb41-Niobium!⇒chmElrNb41,
* McsEngl.chmElrNb41!=Niobium,
* McsEngl.Niobium-Nb41-chmElry!⇒chmElrNb41,
* McsEngl.Nb41-Niobium-chmElry!⇒chmElrNb41,
====== langoGreek:
* McsElln.Νιόβιο-Nb41,
name::
* McsEngl.mtrlAtom.Niobium!⇒atomNiobium,
* McsEngl.Niobium-atom!⇒atomNiobium,
* McsEngl.atomNiobium,
* McsEngl.atomNb41!⇒atomNiobium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.7-Nitrogen-N!⇒chmElrN7,
* McsEngl.chmElry.Nitrogen-N7!⇒chmElrN7,
* McsEngl.chmElry.N7-Nitrogen!⇒chmElrN7,
* McsEngl.chmElrN7,
* McsEngl.Nitrogen-N7-chmElry!⇒chmElrN7,
* McsEngl.N7-Nitrogen-chmElry!⇒chmElrN7,
====== langoGreek:
* McsElln.Άζωτο-N7,
description::
Nitrogen, symbol N, gaseous element that makes up the largest portion of the earth's atmosphere. The atomic number of nitrogen is 7. Nitrogen is in group 15 (or Va) of the periodic table.
Nitrogen was isolated by the British doctor Daniel Rutherford in 1772 and recognized as an elemental gas by the French chemist Antoine Laurent Lavoisier about 1776.
Properties Nitrogen is a colourless, odourless, tasteless, nontoxic gas. It can be condensed into a colourless liquid, which can in turn be compressed into a colourless, crystalline solid. Nitrogen exists in two natural isotopic forms, and four radioactive isotopes have been artificially prepared. Nitrogen melts at -210.01° C (-346.02° F), boils at -195.79° C (-320.42° F), and has a density of 1.251 g/litre at 0° C (32° F) and 1 atmosphere pressure. The atomic weight of nitrogen is 14.007.
Nitrogen is obtained from the atmosphere by passing air over heated copper or iron. The oxygen is removed from the air, leaving nitrogen mixed with inert gases. Pure nitrogen is obtained by fractional distillation of liquid air; because liquid nitrogen has a lower boiling point than liquid oxygen, the nitrogen distills off first and can be collected.
Nitrogen composes about four-fifths (78.03 per cent) by volume of the atmosphere. Nitrogen is inert and serves as a diluter for oxygen in burning and respiration processes. It is an important element in plant nutrition; certain bacteria in the soil convert atmospheric nitrogen into a form, such as nitrate, that can be absorbed by plants, a process called nitrogen fixation. Nitrogen in the form of protein is an important constituent of animal tissue. The element occurs in the combined state in minerals, of which saltpetre (KNO3) and Chile saltpetre (NaNO3) are commercially important products.
Nitrogen combines with other elements only at very high temperatures or pressures. It is converted to an active form by passing through an electric discharge at low pressure. The nitrogen so produced is very active, combining with alkali metals to form azides; with the vapour of zinc, mercury, cadmium, and arsenic to form nitrides; and with many hydrocarbons to form hydrocyanic acid and cyanides, also known as nitriles. Activated nitrogen returns to ordinary nitrogen in about one minute.
In the combined state nitrogen takes part in many reactions; it forms so many compounds that a systematic scheme of compounds containing nitrogen in place of oxygen was created by the American chemist Edward Franklin. In compounds nitrogen exists in all the valence states between -3 and +5. Ammonia, hydrazine, and hydroxylamine represent compounds in which the valence of nitrogen is -3, -2, and -1, respectively. Oxides of nitrogen represent nitrogen in all the positive valence states.
Uses Most of the nitrogen used in the chemical industry is obtained by the fractional distillation of liquid air. It is then used to synthesize ammonia. From ammonia produced in this manner, a wide variety of important chemical products are prepared, including fertilizers, nitric acid, urea, hydrazine, and amines. In addition, an ammonia compound is used in the preparation of nitrous oxide (N2O) a colourless gas popularly known as laughing gas. Mixed with oxygen, nitrous oxide is used as an anaesthetic for some types of surgery.
Used as a coolant, liquid nitrogen has found widespread application in the field of cryogenics. With the recent advent of ceramic materials that become superconductive at the boiling point of nitrogen, the use of nitrogen as a coolant is increasing (See Superconductivity).
"Nitrogen," Microsoft(R) Encarta(R) 97 Encyclopedia. (c) 1993-1996 Microsoft Corporation. All rights reserved.
name::
* McsEngl.mtrlAtom.Nitrogen!⇒atomNitrogen,
* McsEngl.Nitrogen-atom!⇒atomNitrogen,
* McsEngl.atomNitrogen,
* McsEngl.atomN7!⇒atomNitrogen,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.102-Nobelium-No!⇒chmElrNo102,
* McsEngl.chmElry.Nobelium-No102!⇒chmElrNo102,
* McsEngl.chmElry.No102-Nobelium!⇒chmElrNo102,
* McsEngl.chmElrNo102!=Nobelium,
* McsEngl.Nobelium-No102-chmElry!⇒chmElrNo102,
* McsEngl.No102-Nobelium-chmElry!⇒chmElrNo102,
====== langoGreek:
* McsElln.Νομπέλιο-No102,
name::
* McsEngl.mtrlAtom.Nobelium!⇒atomNobelium,
* McsEngl.Nobelium-atom!⇒atomNobelium,
* McsEngl.atomNobelium,
* McsEngl.atomNo102!⇒atomNobelium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.76-Osmium-Os!⇒chmElrOs76,
* McsEngl.chmElry.Osmium-Os76!⇒chmElrOs76,
* McsEngl.chmElry.Os76-Osmium!⇒chmElrOs76,
* McsEngl.chmElrOs76!=Osmium,
* McsEngl.Osmium-Os76-chmElry!⇒chmElrOs76,
* McsEngl.Os76-Osmium-chmElry!⇒chmElrOs76,
====== langoGreek:
* McsElln.Όσμιο-Os76,
name::
* McsEngl.mtrlAtom.Osmium!⇒atomOsmium,
* McsEngl.Osmium-atom!⇒atomOsmium,
* McsEngl.atomOsmium,
* McsEngl.atomOs76!⇒atomOsmium,
generic-tree::
* material-atom,
description::
"Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O2. Diatomic oxygen gas constitutes 20.8% of the Earth's atmosphere. As compounds including oxides, the element makes up almost half of the Earth's crust."
[{2020-01-02} https://en.wikipedia.org/wiki/Oxygen]
name::
* McsEngl.chmElry.8-Oxygen-O!⇒chmElrO8,
* McsEngl.chmElry.Oxygen-O8!⇒chmElrO8,
* McsEngl.chmElry.O8-Oxygen!⇒chmElrO8,
* McsEngl.chmElrO8,
* McsEngl.Oxygen-O8-chmElry!⇒chmElrO8,
* McsEngl.O8-Oxygen-chmElry!⇒chmElrO8,
====== langoGreek:
* McsElln.Οξυγόνο-O8,
description::
How Much Do Marine Plants Contribute to Earth’s Oxygen Supply?
Scientists estimate that at least 50% of the world's oxygen is produced by tiny ocean plants called phytoplankton.
Although we typically think of jungles and rainforests such as the Amazon as being the "lungs" of the planet, that's not exactly true. Although we do owe much of the planet's oxygen to trees and other land plants, at least half of the oxygen actually comes from the oceans. A key component of ecosystems in oceans, seas, and freshwater basins, the photosynthesizing microorganisms known as phytoplankton contribute an estimated 50 to 85 percent of the oxygen in the Earth’s atmosphere. You’re probably breathing oxygen right now that was produced by these single-celled plants.
[http://www.wisegeek.com/how-much-do-marine-plants-contribute-to-earths-oxygen-supply.htm?m {2019-04-01}]
name::
* McsEngl.mtrlAtom.Oxygen!⇒atomOxygen,
* McsEngl.Oxygen-atom!⇒atomOxygen,
* McsEngl.atomOxygen,
* McsEngl.atomO8!⇒atomOxygen,
generic-tree::
* material-atom,
description::
· dioxygen is an-oxygen--chemical-elementary with 2 oxygen-atoms in its molecule.
name::
* McsEngl.ozone,
* McsEngl.triozygen,
description::
· ozone is an-oxygen--chemical-elementary with 3 oxygen-atoms in its molecule.
name::
* McsEngl.chmElry.46-Palladium-Pd!⇒chmElrPd46,
* McsEngl.chmElry.Palladium-Pd46!⇒chmElrPd46,
* McsEngl.chmElry.Pd46-Palladium!⇒chmElrPd46,
* McsEngl.chmElrPd46!=Palladium,
* McsEngl.Palladium-Pd46-chmElry!⇒chmElrPd46,
* McsEngl.Pd46-Palladium-chmElry!⇒chmElrPd46,
====== langoGreek:
* McsElln.Παλλάδιο-Pd46,
name::
* McsEngl.mtrlAtom.Palladium!⇒atomPalladium,
* McsEngl.Palladium-atom!⇒atomPalladium,
* McsEngl.atomPalladium,
* McsEngl.atomPd46!⇒atomPalladium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.15-Phosphorus-P!⇒chmElrP15,
* McsEngl.chmElry.Phosphorus-P15!⇒chmElrP15,
* McsEngl.chmElry.P15-Phosphorus!⇒chmElrP15,
* McsEngl.chmElrP15,
* McsEngl.Phosphorus-P15-chmElry!⇒chmElrP15,
* McsEngl.P15-Phosphorus-chmElry!⇒chmElrP15,
====== langoGreek:
* McsElln.Φωσφόρος-P15,
description::
How Was Phosphorus Discovered?
Hennig Brand accidentally discovered phosphorus while examining urine for alchemy experiments.
Phosphorus is sometimes referred to as "the Devil's element” because it was the 13th element to be discovered. It was isolated by Hennig Brand, a German alchemist who was searching for a method of creating the Philosopher's Stone. His attempt involved boiling hundreds of liters of urine, resulting in a small amount of white paste that could glow in thedark and burned very brightly. Hoping he could eventually turn thesubstance into the Philosopher's Stone, Brand kept the recipe a secret for six years before selling it to Daniel Krafft.
[Read More: http://www.wisegeek.com/how-was-phosphorus-discovered.htm?m, {2016-06-07}],
name::
* McsEngl.evoluting-of-chmElrP15,
* McsEngl.chmElrP15'evoluting,
name::
* McsEngl.mtrlAtom.Phosphorus!⇒atomPhosphorus,
* McsEngl.Phosphorus-atom!⇒atomPhosphorus,
* McsEngl.atomPhosphorus,
* McsEngl.atomP15!⇒atomPhosphorus,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.78-Platinum-Pt!⇒chmElrPt78,
* McsEngl.chmElry.Platinum-Pt78!⇒chmElrPt78,
* McsEngl.chmElry.Pt78-Platinum!⇒chmElrPt78,
* McsEngl.chmElrPt78!=Platinum,
* McsEngl.Platinum-Pt78-chmElry!⇒chmElrPt78,
* McsEngl.Pt78-Platinum-chmElry!⇒chmElrPt78,
====== langoGreek:
* McsElln.Λευκόχρυσος-Pt78,
name::
* McsEngl.mtrlAtom.Platinum!⇒atomPlatinum,
* McsEngl.Platinum-atom!⇒atomPlatinum,
* McsEngl.atomPlatinum,
* McsEngl.atomPt78!⇒atomPlatinum,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.94-Plutonium-Pu!⇒chmElrPu94,
* McsEngl.chmElry.Plutonium-Pu94!⇒chmElrPu94,
* McsEngl.chmElry.Pu94-Plutonium!⇒chmElrPu94,
* McsEngl.chmElrPu94!=Plutonium,
* McsEngl.Plutonium-Pu94-chmElry!⇒chmElrPu94,
* McsEngl.Pu94-Plutonium-chmElry!⇒chmElrPu94,
====== langoGreek:
* McsElln.Πλουτώνιο-Pu94,
name::
* McsEngl.mtrlAtom.Plutonium!⇒atomPlutonium,
* McsEngl.Plutonium-atom!⇒atomPlutonium,
* McsEngl.atomPlutonium,
* McsEngl.atomPu94!⇒atomPlutonium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.84-Polonium-Po!⇒chmElrPo84,
* McsEngl.chmElry.Polonium-Po84!⇒chmElrPo84,
* McsEngl.chmElry.Po84-Polonium!⇒chmElrPo84,
* McsEngl.chmElrPo84!=Polonium,
* McsEngl.Polonium-Po84-chmElry!⇒chmElrPo84,
* McsEngl.Po84-Polonium-chmElry!⇒chmElrPo84,
====== langoGreek:
* McsElln.Πολώνιο-Po84,
name::
* McsEngl.mtrlAtom.Polonium!⇒atomPolonium,
* McsEngl.Polonium-atom!⇒atomPolonium,
* McsEngl.atomPolonium,
* McsEngl.atomPo84!⇒atomPolonium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.19-Potassium-Κ!⇒chmElrΚ19,
* McsEngl.chmElry.Potassium-Κ19!⇒chmElrΚ19,
* McsEngl.chmElry.Κ19-Potassium!⇒chmElrΚ19,
* McsEngl.chmElrΚ19,
* McsEngl.Potassium-Κ19-chmElry!⇒chmElrΚ19,
* McsEngl.K19-Potassium-chmElry!⇒chmElrΚ19,
* McsEngl.Kalium!⇒chmElrΚ19,
====== langoGreek:
* McsElln.Κάλιο-Κ19,
name::
* McsEngl.mtrlAtom.Potassium!⇒atomPotassium,
* McsEngl.Potassium-atom!⇒atomPotassium,
* McsEngl.atomPotassium,
* McsEngl.atomΚ19!⇒atomPotassium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.59-Praseodymium-Pr!⇒chmElrPr59,
* McsEngl.chmElry.Praseodymium-Pr59!⇒chmElrPr59,
* McsEngl.chmElry.Pr59-Praseodymium!⇒chmElrPr59,
* McsEngl.chmElrPr59!=Praseodymium,
* McsEngl.Praseodymium-Pr59-chmElry!⇒chmElrPr59,
* McsEngl.Pr59-chmElrPraseodymium-!⇒chmElrPr59,
====== langoGreek:
* McsElln.Πρασινοδύμιο-Pr59,
name::
* McsEngl.mtrlAtom.Praseodymium!⇒atomPraseodymium,
* McsEngl.Praseodymium-atom!⇒atomPraseodymium,
* McsEngl.atomPraseodymium,
* McsEngl.atomPr59!⇒atomPraseodymium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.61-Promethium-Pm!⇒chmElrPm61,
* McsEngl.chmElry.Promethium-Pm61!⇒chmElrPm61,
* McsEngl.chmElry.Pm61-Promethium!⇒chmElrPm61,
* McsEngl.chmElrPm61!=Promethium,
* McsEngl.Promethium-Pm61-chmElry!⇒chmElrPm61,
* McsEngl.Pm61-Promethium-chmElry!⇒chmElrPm61,
====== langoGreek:
* McsElln.Προμήθιο-Pm61,
name::
* McsEngl.mtrlAtom.Promethium!⇒atomPromethium,
* McsEngl.Promethium-atom!⇒atomPromethium,
* McsEngl.atomPromethium,
* McsEngl.atomPm61!⇒atomPromethium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.91-Protactinium-Pa!⇒chmElrPa91,
* McsEngl.chmElry.Protactinium-Pa91!⇒chmElrPa91,
* McsEngl.chmElry.Pa91-Protactinium!⇒chmElrPa91,
* McsEngl.chmElrPa91!=Protactinium,
* McsEngl.Protactinium-Pa91-chmElry!⇒chmElrPa91,
* McsEngl.Pa91-chmElrProtactinium-!⇒chmElrPa91,
====== langoGreek:
* McsElln.Πρωτακτίνιο-Pa91,
name::
* McsEngl.mtrlAtom.Protactinium!⇒atomProtactinium,
* McsEngl.Protactinium-atom!⇒atomProtactinium,
* McsEngl.atomProtactinium,
* McsEngl.atomPa91!⇒atomProtactinium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.88-Radium-Ra!⇒chmElrRa88,
* McsEngl.chmElry.Radium-Ra88!⇒chmElrRa88,
* McsEngl.chmElry.Ra88-Radium!⇒chmElrRa88,
* McsEngl.chmElrRa88!=Radium,
* McsEngl.Radium-Ra88-chmElry!⇒chmElrRa88,
* McsEngl.Ra88-Radium-chmElry!⇒chmElrRa88,
====== langoGreek:
* McsElln.Ράδιο-Ra88!=chmElrRa88,
name::
* McsEngl.mtrlAtom.Radium!⇒atomRadium,
* McsEngl.Radium-atom!⇒atomRadium,
* McsEngl.atomRadium,
* McsEngl.atomRa88!⇒atomRadium,
generic-tree::
* material-atom,
{time.1920s-1930s}::
=== What Lasting Impact Did Marie Curie Have on Paris?
France is still cleaning up radioactive waste from Marie Curie's laboratory in the southern suburbs of Paris.
Marie Curie and her husband, Pierre, made a name for themselves in the 1920s and 1930s when their research led to the discovery of polonium and radium. Their experiments with radioactivity at their laboratory in Arcueil, south of Paris, led to the use of radiation to treat cancer patients. But, boy, did their work create a major mess. Today, Marie Curie's abandoned lab, located in a working-class Parisian suburb, is barricaded behind a concrete wall topped with barbed wire, surveillance cameras, and radiation monitors. The radioactivity of the site, which has undergone a number of cleanup efforts, has led some to refer to the site as "Chernobyl on the Seine."
[Read More: http://www.wisegeek.com/what-lasting-impact-did-marie-curie-have-on-paris.htm?m {2020-01-05}]
name::
* McsEngl.evoluting-of-chmElrRa88,
* McsEngl.chmElrRa88'evoluting,
name::
* McsEngl.chmElry.86-Radon-Rn!⇒chmElrRn86,
* McsEngl.chmElry.Radon-Rn86!⇒chmElrRn86,
* McsEngl.chmElry.Rn86-Radon!⇒chmElrRn86,
* McsEngl.chmElrRn86!=Radon,
* McsEngl.Radon-Rn86-chmElry!⇒chmElrRn86,
* McsEngl.Rn86-Radon-chmElry!⇒chmElrRn86,
====== langoGreek:
* McsElln.Ραδόνιο-Rn86,
name::
* McsEngl.mtrlAtom.Radon!⇒atomRadon,
* McsEngl.Radon-atom!⇒atomRadon,
* McsEngl.atomRadon,
* McsEngl.atomRn86!⇒atomRadon,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.75-Rhenium-Re!⇒chmElrRe75,
* McsEngl.chmElry.Rhenium-Re75!⇒chmElrRe75,
* McsEngl.chmElry.Re75-Rhenium!⇒chmElrRe75,
* McsEngl.chmElrRe75!=Rhenium,
* McsEngl.Rhenium-Re75-chmElry!⇒chmElrRe75,
* McsEngl.Re75-Rhenium-chmElry!⇒chmElrRe75,
====== langoGreek:
* McsElln.Ρήνιο-Re75,
name::
* McsEngl.mtrlAtom.Rhenium!⇒atomRhenium,
* McsEngl.Rhenium-atom!⇒atomRhenium,
* McsEngl.atomRhenium,
* McsEngl.atomRe75!⇒atomRhenium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.45-Rhodium-Rh!⇒chmElrRh45,
* McsEngl.chmElry.Rhodium-Rh45!⇒chmElrRh45,
* McsEngl.chmElry.Rh45-Rhodium!⇒chmElrRh45,
* McsEngl.chmElrRh45!=Rhodium,
* McsEngl.Rhodium-Rh45-chmElry!⇒chmElrRh45,
* McsEngl.Rh45-Rhodium-chmElry!⇒chmElrRh45,
====== langoGreek:
* McsElln.Ρόδιο-Rh45,
name::
* McsEngl.mtrlAtom.Rhodium!⇒atomRhodium,
* McsEngl.Rhodium-atom!⇒atomRhodium,
* McsEngl.atomRhodium,
* McsEngl.atomRh45!⇒atomRhodium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.37-Rubidium-Rb!⇒chmElrRb37,
* McsEngl.chmElry.Rubidium-Rb37!⇒chmElrRb37,
* McsEngl.chmElry.Rb37-Rubidium!⇒chmElrRb37,
* McsEngl.chmElrRb37!=Rubidium,
* McsEngl.Rubidium-Rb37-chmElry!⇒chmElrRb37,
* McsEngl.Rb37-Rubidium-chmElry!⇒chmElrRb37,
====== langoGreek:
* McsElln.Ρουβίδιο-Rb37,
name::
* McsEngl.mtrlAtom.Rubidium!⇒atomRubidium,
* McsEngl.Rubidium-atom!⇒atomRubidium,
* McsEngl.atomRubidium,
* McsEngl.atomRb37!⇒atomRubidium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.44-Ruthenium-Ru!⇒chmElrRu44,
* McsEngl.chmElry.Ruthenium-Ru44!⇒chmElrRu44,
* McsEngl.chmElry.Ru44-Ruthenium!⇒chmElrRu44,
* McsEngl.chmElrRu44!=Ruthenium,
* McsEngl.Ruthenium-Ru44-chmElry!⇒chmElrRu44,
* McsEngl.Ru44-Ruthenium-chmElry!⇒chmElrRu44,
====== langoGreek:
* McsElln.Ρουθήνιο-Ru44,
name::
* McsEngl.mtrlAtom.Ruthenium!⇒atomRuthenium,
* McsEngl.Ruthenium-atom!⇒atomRuthenium,
* McsEngl.atomRuthenium,
* McsEngl.atomRu44!⇒atomRuthenium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.104-Rutherfordium-Rf!⇒chmElrRf104,
* McsEngl.chmElry.Rutherfordium-Rf104!⇒chmElrRf104,
* McsEngl.chmElry.Rf104-Rutherfordium!⇒chmElrRf104,
* McsEngl.chmElrRf104!=Rutherfordium,
* McsEngl.Rutherfordium-Rf104-chmElry!⇒chmElrRf104,
* McsEngl.Rf104-chmElrRutherfordium-!⇒chmElrRf104,
====== langoGreek:
* McsElln.Ραδερφόρντιο-Rf104,
name::
* McsEngl.mtrlAtom.Rutherfordium!⇒atomRutherfordium,
* McsEngl.Rutherfordium-atom!⇒atomRutherfordium,
* McsEngl.atomRutherfordium,
* McsEngl.atomRf104!⇒atomRutherfordium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.62-Samarium-Sm!⇒chmElrSm62,
* McsEngl.chmElry.Samarium-Sm62!⇒chmElrSm62,
* McsEngl.chmElry.Sm62-Samarium!⇒chmElrSm62,
* McsEngl.chmElrSm62!=Samarium,
* McsEngl.Samarium-Sm62-chmElry!⇒chmElrSm62,
* McsEngl.Sm62-Samarium-chmElry!⇒chmElrSm62,
====== langoGreek:
* McsElln.Σαμάριο-Sm62,
name::
* McsEngl.mtrlAtom.Samarium!⇒atomSamarium,
* McsEngl.Samarium-atom!⇒atomSamarium,
* McsEngl.atomSamarium,
* McsEngl.atomSm62!⇒atomSamarium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.21-Scandium-Sc!⇒chmElrSc21,
* McsEngl.chmElry.Scandium-Sc21!⇒chmElrSc21,
* McsEngl.chmElry.Sc21-Scandium!⇒chmElrSc21,
* McsEngl.chmElrSc21!=Scandium,
* McsEngl.Scandium-Sc21-chmElry!⇒chmElrSc21,
* McsEngl.Sc21-Scandium-chmElry!⇒chmElrSc21,
====== langoGreek:
* McsElln.Σκάνδιο-Sc21,
name::
* McsEngl.mtrlAtom.Scandium!⇒atomScandium,
* McsEngl.Scandium-atom!⇒atomScandium,
* McsEngl.atomScandium,
* McsEngl.atomSc21!⇒atomScandium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.106-Seaborgium-Sg!⇒chmElrSg106,
* McsEngl.chmElry.Seaborgium-Sg106!⇒chmElrSg106,
* McsEngl.chmElry.Sg106-Seaborgium!⇒chmElrSg106,
* McsEngl.chmElrSg106!=Seaborgium,
* McsEngl.Seaborgium-Sg106-chmElry!⇒chmElrSg106,
* McsEngl.Sg106-Seaborgium-chmElry!⇒chmElrSg106,
====== langoGreek:
* McsElln.Σιμπόργκιο-Sg106,
name::
* McsEngl.mtrlAtom.Seaborgium!⇒atomSeaborgium,
* McsEngl.Seaborgium-atom!⇒atomSeaborgium,
* McsEngl.atomSeaborgium,
* McsEngl.atomSg106!⇒atomSeaborgium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.34-Selenium-Se!⇒chmElrSe34,
* McsEngl.chmElry.Selenium-Se34!⇒chmElrSe34,
* McsEngl.chmElry.Se34-Selenium!⇒chmElrSe34,
* McsEngl.chmElrSe34!=Selenium,
* McsEngl.Selenium-Se34-chmElry!⇒chmElrSe34,
* McsEngl.Se34-Selenium-chmElry!⇒chmElrSe34,
====== langoGreek:
* McsElln.Σελήνιο-Se34,
name::
* McsEngl.mtrlAtom.Selenium!⇒atomSelenium,
* McsEngl.Selenium-atom!⇒atomSelenium,
* McsEngl.atomSelenium,
* McsEngl.atomSe34!⇒atomSelenium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.14-Silicon-Si!⇒chmElrSi14,
* McsEngl.chmElry.Silicon-Si14!⇒chmElrSi14,
* McsEngl.chmElry.Si14-Silicon!⇒chmElrSi14,
* McsEngl.chmElrSi14!=Silicon,
* McsEngl.Silicon-Si14-chmElry!⇒chmElrSi14,
* McsEngl.Si14-Silicon-chmElry!⇒chmElrSi14,
====== langoGreek:
* McsElln.Πυρίτιο-Si14,
name::
* McsEngl.mtrlAtom.Silicon!⇒atomSilicon,
* McsEngl.Silicon-atom!⇒atomSilicon,
* McsEngl.atomSilicon,
* McsEngl.atomSi14!⇒atomSilicon,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.47-Silver-Ag!⇒chmElrAg47,
* McsEngl.chmElry.Silver-Ag47!⇒chmElrAg47,
* McsEngl.chmElry.Ag47-Silver!⇒chmElrAg47,
* McsEngl.chmElrAg47!=Silver,
* McsEngl.Silver-Ag47-chmElry!⇒chmElrAg47,
* McsEngl.Ag47-Silver-chmElry!⇒chmElrAg47,
====== langoGreek:
* McsElln.Άργυρος-Ag47,
name::
* McsEngl.mtrlAtom.Silver!⇒atomSilver,
* McsEngl.Silver-atom!⇒atomSilver,
* McsEngl.atomSilver,
* McsEngl.atomAg47!⇒atomSilver,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.11-Sodium-Na!⇒chmElrNa11,
* McsEngl.chmElry.Sodium-Na11!⇒chmElrNa11,
* McsEngl.chmElry.Na11-Sodium!⇒chmElrNa11,
* McsEngl.chmElrNa11!=Sodium,
* McsEngl.Sodium-Na11-chmElry!⇒chmElrNa11,
* McsEngl.Na11-Sodium-chmElry!⇒chmElrNa11,
====== langoGreek:
* McsElln.Νάτριο-Na11,
name::
* McsEngl.mtrlAtom.Sodium!⇒atomSodium,
* McsEngl.Sodium-atom!⇒atomSodium,
* McsEngl.atomSodium,
* McsEngl.atomNa11!⇒atomSodium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.38-Strontium-Sr!⇒chmElrSr38,
* McsEngl.chmElry.Strontium-Sr38!⇒chmElrSr38,
* McsEngl.chmElry.Sr38-Strontium!⇒chmElrSr38,
* McsEngl.chmElrSr38!=Strontium,
* McsEngl.Strontium-Sr38-chmElry!⇒chmElrSr38,
* McsEngl.Sr38-Strontium-chmElry!⇒chmElrSr38,
====== langoGreek:
* McsElln.Στρόντιο-Sr38,
name::
* McsEngl.mtrlAtom.Strontium!⇒atomStrontium,
* McsEngl.Strontium-atom!⇒atomStrontium,
* McsEngl.atomStrontium,
* McsEngl.atomSr38!⇒atomStrontium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.16-Sulfur-S!⇒chmElrS16,
* McsEngl.chmElry.Sulfur-S16!⇒chmElrS16,
* McsEngl.chmElry.S16-Sulfur!⇒chmElrS16,
* McsEngl.chmElrS16,
* McsEngl.Sulfur-S16-chmElry!⇒chmElrS16,
* McsEngl.S16-Sulfur-chmElry!⇒chmElrS16,
====== langoGreek:
* McsElln.Θείο-S16,
name::
* McsEngl.mtrlAtom.Sulfur!⇒atomSulfur,
* McsEngl.Sulfur-atom!⇒atomSulfur,
* McsEngl.atomSulfur,
* McsEngl.atomS16!⇒atomSulfur,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.73-Tantalum-Ta!⇒chmElrTa73,
* McsEngl.chmElry.Tantalum-Ta73!⇒chmElrTa73,
* McsEngl.chmElry.Ta73-Tantalum!⇒chmElrTa73,
* McsEngl.chmElrTa73!=Tantalum,
* McsEngl.Tantalum-Ta73-chmElry!⇒chmElrTa73,
* McsEngl.Ta73-Tantalum-chmElry!⇒chmElrTa73,
====== langoGreek:
* McsElln.Ταντάλιο-Ta73,
name::
* McsEngl.mtrlAtom.Tantalum!⇒atomTantalum,
* McsEngl.Tantalum-atom!⇒atomTantalum,
* McsEngl.atomTantalum,
* McsEngl.atomTa73!⇒atomTantalum,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.43-Technetium-Tc!⇒chmElrTc43,
* McsEngl.chmElry.Technetium-Tc43!⇒chmElrTc43,
* McsEngl.chmElry.Tc43-Technetium!⇒chmElrTc43,
* McsEngl.chmElrTc43!=Technetium,
* McsEngl.Technetium-Tc43-chmElry!⇒chmElrTc43,
* McsEngl.Tc43-Technetium-chmElry!⇒chmElrTc43,
====== langoGreek:
* McsElln.Τεχνήτιο-Tc43,
name::
* McsEngl.mtrlAtom.Technetium!⇒atomTechnetium,
* McsEngl.Technetium-atom!⇒atomTechnetium,
* McsEngl.atomTechnetium,
* McsEngl.atomTc43!⇒atomTechnetium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.52-Tellurium-Te!⇒chmElrTe52,
* McsEngl.chmElry.Tellurium-Te52!⇒chmElrTe52,
* McsEngl.chmElry.Te52-Tellurium!⇒chmElrTe52,
* McsEngl.chmElrTe52!=Tellurium,
* McsEngl.Tellurium-Te52-chmElry!⇒chmElrTe52,
* McsEngl.Te52-Tellurium-chmElry!⇒chmElrTe52,
====== langoGreek:
* McsElln.Τελλούριο-Te52,
name::
* McsEngl.mtrlAtom.Tellurium!⇒atomTellurium,
* McsEngl.Tellurium-atom!⇒atomTellurium,
* McsEngl.atomTellurium,
* McsEngl.atomTe52!⇒atomTellurium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.65-Terbium-Tb!⇒chmElrTb65,
* McsEngl.chmElry.Terbium-Tb65!⇒chmElrTb65,
* McsEngl.chmElry.Tb65-Terbium!⇒chmElrTb65,
* McsEngl.chmElrTb65!=Terbium,
* McsEngl.Terbium-Tb65-chmElry!⇒chmElrTb65,
* McsEngl.Tb65-Terbium-chmElry!⇒chmElrTb65,
====== langoGreek:
* McsElln.Τέρβιο-Tb65,
name::
* McsEngl.mtrlAtom.Terbium!⇒atomTerbium,
* McsEngl.Terbium-atom!⇒atomTerbium,
* McsEngl.atomTerbium,
* McsEngl.atomTb65!⇒atomTerbium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.81-Thallium-Tl!⇒chmElrTl81,
* McsEngl.chmElry.Thallium-Tl81!⇒chmElrTl81,
* McsEngl.chmElry.Tl81-Thallium!⇒chmElrTl81,
* McsEngl.chmElrTl81!=Thallium,
* McsEngl.Thallium-Tl81-chmElry!⇒chmElrTl81,
* McsEngl.Tl81-Thallium-chmElry!⇒chmElrTl81,
====== langoGreek:
* McsElln.Θάλλιο-Tl81,
name::
* McsEngl.mtrlAtom.Thallium!⇒atomThallium,
* McsEngl.Thallium-atom!⇒atomThallium,
* McsEngl.atomThallium,
* McsEngl.atomTl81!⇒atomThallium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.90-Thorium-Th!⇒chmElrTh90,
* McsEngl.chmElry.Thorium-Th90!⇒chmElrTh90,
* McsEngl.chmElry.Th90-Thorium!⇒chmElrTh90,
* McsEngl.chmElrTh90!=Thorium,
* McsEngl.Thorium-Th90-chmElry!⇒chmElrTh90,
* McsEngl.Th90-Thorium-chmElry!⇒chmElrTh90,
====== langoGreek:
* McsElln.Θόριο-Th90,
name::
* McsEngl.mtrlAtom.Thorium!⇒atomThorium,
* McsEngl.Thorium-atom!⇒atomThorium,
* McsEngl.atomThorium,
* McsEngl.atomTh90!⇒atomThorium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.69-Thulium-Tm!⇒chmElrTm69,
* McsEngl.chmElry.Thulium-Tm69!⇒chmElrTm69,
* McsEngl.chmElry.Tm69-Thulium!⇒chmElrTm69,
* McsEngl.chmElrTm69!=Thulium,
* McsEngl.Thulium-Tm69-chmElry!⇒chmElrTm69,
* McsEngl.Tm69-Thulium-chmElry!⇒chmElrTm69,
====== langoGreek:
* McsElln.Θούλιο-Tm69,
name::
* McsEngl.mtrlAtom.Thulium!⇒atomThulium,
* McsEngl.Thulium-atom!⇒atomThulium,
* McsEngl.atomThulium,
* McsEngl.atomTm69!⇒atomThulium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.50-Tin-Sn!⇒chmElrSn50,
* McsEngl.chmElry.Tin-Sn50!⇒chmElrSn50,
* McsEngl.chmElry.Sn50-Tin!⇒chmElrSn50,
* McsEngl.chmElrSn50!=Tin,
* McsEngl.Tin-Sn50-chmElry!⇒chmElrSn50,
* McsEngl.Sn50-Tin-chmElry!⇒chmElrSn50,
====== langoGreek:
* McsElln.Κασσίτερος-Sn50,
name::
* McsEngl.mtrlAtom.Tin!⇒atomTin,
* McsEngl.Tin-atom!⇒atomTin,
* McsEngl.atomTin,
* McsEngl.atomSn50!⇒atomTin,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.22-Titanium-Ti!⇒chmElrTi22,
* McsEngl.chmElry.Titanium-Ti22!⇒chmElrTi22,
* McsEngl.chmElry.Ti22-Titanium!⇒chmElrTi22,
* McsEngl.chmElrTi22!=Titanium,
* McsEngl.Titanium-Ti22-chmElry!⇒chmElrTi22,
* McsEngl.Ti22-Titanium-chmElry!⇒chmElrTi22,
====== langoGreek:
* McsElln.Τιτάνιο-Ti22,
name::
* McsEngl.mtrlAtom.Titanium!⇒atomTitanium,
* McsEngl.Titanium-atom!⇒atomTitanium,
* McsEngl.atomTitanium,
* McsEngl.atomTi22!⇒atomTitanium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.74-Tungsten-W!⇒chmElrW74,
* McsEngl.chmElry.Tungsten-W74!⇒chmElrW74,
* McsEngl.chmElry.W74-Tungsten!⇒chmElrW74,
* McsEngl.chmElrW74,
* McsEngl.Tungsten-W74-chmElry!⇒chmElrW74,
* McsEngl.W74-Tungsten-chmElry!⇒chmElrW74,
====== langoGreek:
* McsElln.Βολφράμιο-W74,
name::
* McsEngl.mtrlAtom.Tungsten!⇒atomTungsten,
* McsEngl.Tungsten-atom!⇒atomTungsten,
* McsEngl.atomTungsten,
* McsEngl.atomW74!⇒atomTungsten,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.112-Ununbium-Uub!⇒chmElrUub112,
* McsEngl.chmElry.Ununbium-Uub112!⇒chmElrUub112,
* McsEngl.chmElry.Uub112-Ununbium!⇒chmElrUub112,
* McsEngl.chmElrUub112,
* McsEngl.Ununbium-Uub112-chmElry!⇒chmElrUub112,
* McsEngl.Uub112-Ununbium-chmElry!⇒chmElrUub112,
====== langoGreek:
* McsElln.Κοπερνίκιο-Uub112,
name::
* McsEngl.mtrlAtom.Ununbium!⇒atomUnunbium,
* McsEngl.Ununbium-atom!⇒atomUnunbium,
* McsEngl.atomUnunbium,
* McsEngl.atomUub112!⇒atomUnunbium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.116-Ununhexium-Uuh!⇒chmElrUuh116,
* McsEngl.chmElry.Ununhexium-Uuh116!⇒chmElrUuh116,
* McsEngl.chmElry.Uuh116-Ununhexium!⇒chmElrUuh116,
* McsEngl.chmElrUuh116,
* McsEngl.Ununhexium-Uuh116-chmElry!⇒chmElrUuh116,
* McsEngl.Uuh116-Ununhexium-chmElry!⇒chmElrUuh116,
====== langoGreek:
* McsElln.Ουνουχέξιο-Uuh116,
name::
* McsEngl.mtrlAtom.Ununhexium!⇒atomUnunhexium,
* McsEngl.Ununhexium-atom!⇒atomUnunhexium,
* McsEngl.atomUnunhexium,
* McsEngl.atomUuh116!⇒atomUnunhexium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.118-Ununoctium-Uuo!⇒chmElrUuo118,
* McsEngl.chmElry.Ununoctium-Uuo118!⇒chmElrUuo118,
* McsEngl.chmElry.Uuo118-Ununoctium!⇒chmElrUuo118,
* McsEngl.chmElrUuo118,
* McsEngl.Ununoctium-Uuo118-chmElry!⇒chmElrUuo118,
* McsEngl.Uuo118-Ununoctium-chmElry!⇒chmElrUuo118,
name::
* McsEngl.mtrlAtom.Ununoctium!⇒atomUnunoctium,
* McsEngl.Ununoctium-atom!⇒atomUnunoctium,
* McsEngl.atomUnunoctium,
* McsEngl.atomUuo118!⇒atomUnunoctium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.115-Ununpentium-Uup!⇒chmElrUup115,
* McsEngl.chmElry.Ununpentium-Uup115!⇒chmElrUup115,
* McsEngl.chmElry.Uup115-Ununpentium!⇒chmElrUup115,
* McsEngl.chmElrUup115,
* McsEngl.Ununpentium-Uup115-chmElry!⇒chmElrUup115,
* McsEngl.Uup115-Ununpentium-chmElry!⇒chmElrUup115,
====== langoGreek:
* McsElln.Ουνουπέντιο-Uup115,
name::
* McsEngl.mtrlAtom.Ununpentium!⇒atomUnunpentium,
* McsEngl.Ununpentium-atom!⇒atomUnunpentium,
* McsEngl.atomUnunpentium,
* McsEngl.atomUup115!⇒atomUnunpentium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.114-Ununquadium-Uuq!⇒chmElrUuq114,
* McsEngl.chmElry.Ununquadium-Uuq114!⇒chmElrUuq114,
* McsEngl.chmElry.Uuq114-Ununquadium!⇒chmElrUuq114,
* McsEngl.chmElrUuq114,
* McsEngl.Ununquadium-Uuq114-chmElry!⇒chmElrUuq114,
* McsEngl.Uuq114-Ununquadium-chmElry!⇒chmElrUuq114,
====== langoGreek:
* McsElln.Ουνοκουάντιο-Uuq114,
name::
* McsEngl.mtrlAtom.Ununquadium!⇒atomUnunquadium,
* McsEngl.Ununquadium-atom!⇒atomUnunquadium,
* McsEngl.atomUnunquadium,
* McsEngl.atomUuq114!⇒atomUnunquadium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.117-Ununseptium-Uus!⇒chmElrUus117,
* McsEngl.chmElry.Ununseptium-Uus117!⇒chmElrUus117,
* McsEngl.chmElry.Uus117-Ununseptium!⇒chmElrUus117,
* McsEngl.chmElrUus117,
* McsEngl.Ununseptium-Uus117-chmElry!⇒chmElrUus117,
* McsEngl.Uus117-Ununseptium-chmElry!⇒chmElrUus117,
====== langoGreek:
* McsElln.Ουνουσέπτιο-Uus117,
name::
* McsEngl.mtrlAtom.Ununseptium!⇒atomUnunseptium,
* McsEngl.Ununseptium-atom!⇒atomUnunseptium,
* McsEngl.atomUnunseptium,
* McsEngl.atomUus117!⇒atomUnunseptium,
generic-tree::
* material-atom,
description::
Japanese scientists claim first synthesis of element 113
By Jon Bardin
September 26, 2012, 12:29 p.m.
A group of Japanese scientists announced Wednesday that they have finally synthesized the elusive element 113, which has been called ununtrium.
If confirmed, the feat would mark the first time Japanese researchers have been first to synthesize an element of the periodic table. It would also be the first time an Asian research team has had the honor of naming an element.
Ununtrium -- meaning one-one-three -- is the temporary name given to element 113, which can only be created in a laboratory and is extremely unstable. According to the research team, they have been attempting to create the element for more than nine years before finally hitting on the right approach last month.
The team, led by Kosuke Morita of the RIKEN Nishina Center for Accelerator-based Science, had been conducting studies at the RIKEN Linear Accelerator, in a suburb of Tokyo called Wako, when they discovered the formula to create the element. The researchers collided zinc, which has 30 protons, with bismuth, which has 83. The result was an atom with 113 protons in its nucleus, the researchers say.
But the new element quickly decayed. Observing the nature of the decay is crucial to proving the identity of the new element. Morita says the decay data indicate that the collision did indeed create a 113-proton element, though the evidence has not yet been peer-reviewed.
Element 113 is not the most massive synthesized element. That distinction goes to 118, which has the temporary name ununoctium. But, in his statement, Morita expressed optimism that their discovery would be followed by even more ambitious feats:
"I would like to thank all the researchers and staff involved in this momentous result, who persevered with the belief that one day, 113 would be ours. For our next challenge, we look to the uncharted territory of element 119 and beyond."
[http://www.latimes.com/news/science/sciencenow/la-sci-sn-japanese-scientists-claim-first-synthesis-of-new-element-20120926,0,5437509.story]
name::
* McsEngl.chmElry.113-Ununtrium-Uut!⇒chmElrUut113,
* McsEngl.chmElry.Ununtrium-Uut113!⇒chmElrUut113,
* McsEngl.chmElry.Uut113-Ununtrium!⇒chmElrUut113,
* McsEngl.chmElrUut113,
* McsEngl.Ununtrium-Uut113-chmElry!⇒chmElrUut113,
* McsEngl.Uut113-Ununtrium-chmElry!⇒chmElrUut113,
====== langoGreek:
* McsElln.Ουνούντριο-Uut113,
name::
* McsEngl.mtrlAtom.Ununtrium!⇒atomUnuntrium,
* McsEngl.Ununtrium-atom!⇒atomUnuntrium,
* McsEngl.atomUnuntrium,
* McsEngl.atomUut113!⇒atomUnuntrium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.111-Ununium-Uuu!⇒chmElrUuu111,
* McsEngl.chmElry.Ununium-Uuu111!⇒chmElrUuu111,
* McsEngl.chmElry.Uuu111-Ununium!⇒chmElrUuu111,
* McsEngl.chmElrUuu111,
* McsEngl.Ununium-Uuu111-chmElry!⇒chmElrUuu111,
* McsEngl.Uuu111-Ununium-chmElry!⇒chmElrUuu111,
====== langoGreek:
* McsElln.Ρεντγκένιο-Uuu111,
name::
* McsEngl.mtrlAtom.Ununium!⇒atomUnunium,
* McsEngl.Ununium-atom!⇒atomUnunium,
* McsEngl.atomUnunium,
* McsEngl.atomUuu111!⇒atomUnunium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.92-Uranium-U!⇒chmElrU92,
* McsEngl.chmElry.Uranium-U92!⇒chmElrU92,
* McsEngl.chmElry.U92-Uranium!⇒chmElrU92,
* McsEngl.chmElrU92,
* McsEngl.Uranium-U92-chmElry!⇒chmElrU92,
* McsEngl.U92-Uranium-chmElry!⇒chmElrU92,
====== langoGreek:
* McsElln.Ουράνιο-U92,
name::
* McsEngl.mtrlAtom.Uranium!⇒atomUranium,
* McsEngl.Uranium-atom!⇒atomUranium,
* McsEngl.atomUranium,
* McsEngl.atomU92!⇒atomUranium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.23-Vanadium-V!⇒chmElrV23,
* McsEngl.chmElry.Vanadium-V23!⇒chmElrV23,
* McsEngl.chmElry.V23-Vanadium!⇒chmElrV23,
* McsEngl.chmElrV23,
* McsEngl.Vanadium-V23-chmElry!⇒chmElrV23,
* McsEngl.V23-Vanadium-chmElry!⇒chmElrV23,
====== langoGreek:
* McsElln.Βανάδιο-V23,
name::
* McsEngl.mtrlAtom.Vanadium!⇒atomVanadium,
* McsEngl.Vanadium-atom!⇒atomVanadium,
* McsEngl.atomVanadium,
* McsEngl.atomV23!⇒atomVanadium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.54-Xenon-Xe!⇒chmElrXe54,
* McsEngl.chmElry.Xenon-Xe54!⇒chmElrXe54,
* McsEngl.chmElry.Xe54-Xenon!⇒chmElrXe54,
* McsEngl.chmElrXe54!=Xenon,
* McsEngl.Xenon-Xe54-chmElry!⇒chmElrXe54,
* McsEngl.Xe54-Xenon-chmElry!⇒chmElrXe54,
====== langoGreek:
* McsElln.Ξένο-Xe54,
name::
* McsEngl.mtrlAtom.Xenon!⇒atomXenon,
* McsEngl.Xenon-atom!⇒atomXenon,
* McsEngl.atomXenon,
* McsEngl.atomXe54!⇒atomXenon,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.70-Ytterbium-Yb!⇒chmElrYb70,
* McsEngl.chmElry.Ytterbium-Yb70!⇒chmElrYb70,
* McsEngl.chmElry.Yb70-Ytterbium!⇒chmElrYb70,
* McsEngl.chmElrYb70!=Ytterbium,
* McsEngl.Ytterbium-Yb70-chmElry!⇒chmElrYb70,
* McsEngl.Yb70-Ytterbium-chmElry!⇒chmElrYb70,
====== langoGreek:
* McsElln.Υπέρβιο-Yb70,
name::
* McsEngl.mtrlAtom.Ytterbium!⇒atomYtterbium,
* McsEngl.Ytterbium-atom!⇒atomYtterbium,
* McsEngl.atomYtterbium,
* McsEngl.atomYb70!⇒atomYtterbium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.39-Yttrium-Y!⇒chmElrY39,
* McsEngl.chmElry.Yttrium-Y39!⇒chmElrY39,
* McsEngl.chmElry.Y39-Yttrium!⇒chmElrY39,
* McsEngl.chmElrY39,
* McsEngl.Yttrium-Y39-chmElry!⇒chmElrY39,
* McsEngl.Y39-Yttrium-chmElry!⇒chmElrY39,
====== langoGreek:
* McsElln.Ύτριο-Y39,
name::
* McsEngl.mtrlAtom.Yttrium!⇒atomYttrium,
* McsEngl.Yttrium-atom!⇒atomYttrium,
* McsEngl.atomYttrium,
* McsEngl.atomY39!⇒atomYttrium,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.30-Zinc-Zn!⇒chmElrZn30,
* McsEngl.chmElry.Zinc-Zn30!⇒chmElrZn30,
* McsEngl.chmElry.Zn30-Zinc!⇒chmElrZn30,
* McsEngl.chmElrZn30!=Zinc,
* McsEngl.Zn30-Zinc-chmElry!⇒chmElrZn30,
* McsEngl.Zinc-Zn30-chmElry!⇒chmElrZn30,
====== langoGreek:
* McsElln.Ψευδάργυρος-Zinc-Zn30,
name::
* McsEngl.mtrlAtom.Zinc!⇒atomZinc,
* McsEngl.Zinc-atom!⇒atomZinc,
* McsEngl.atomZinc,
* McsEngl.atomZn30!⇒atomZinc,
generic-tree::
* material-atom,
name::
* McsEngl.chmElry.40-Zirconium-Zr!⇒chmElrZr40,
* McsEngl.chmElry.Zirconium-Zr40!⇒chmElrZr40,
* McsEngl.chmElry.Zr40-Zirconium!⇒chmElrZr40,
* McsEngl.chmElrZr40!=Zirconium,
* McsEngl.Zirconium-Zr40-chmElry!⇒chmElrZr40,
* McsEngl.Zr40-Zirconium-chmElry!⇒chmElrZr40,
====== langoGreek:
* McsElln.Ζιρκόνιο-Zr40,
name::
* McsEngl.mtrlAtom.Zirconium!⇒atomZirconium,
* McsEngl.Zirconium-atom!⇒atomZirconium,
* McsEngl.atomZirconium,
* McsEngl.atomZr40!⇒atomZirconium,
generic-tree::
* material-atom,
description::
"The d-block is in the middle of the periodic table and encompasses elements from groups 3 to 12; it starts in the 4th period. Most or all of these elements are also known as transition metals because they occupy a transitional zone in properties, between the strongly electropositive metals of groups 1 and 2, and the weakly electropositive metals of groups 13 to 16. Group 3 or group 12, while still counted as d-block metals, are sometimes not counted as transition metals because they do not show the chemical properties characteristic of transition metals, for example, multiple oxidation states and coloured compounds.
The d-block elements are all metals mostly having one or more chemically active d-orbital electrons. Because there is a relatively small difference in the energy of the different d-orbital electrons, the number of electrons participating in chemical bonding can vary. The d-block elements have a tendency to exhibit two or more oxidation states, differing by multiples of one. The most common oxidation states are +2 and +3; Cr, Fe, Mo, Ru, W, and Os can have oxidation numbers as low as −4; Ir holds the singular distinction of being capable of achieving an oxidation state of +9.
The d-orbitals (four shaped as four-leaf clovers, and the tenth as a dumbbell with a ring around it) can contain up to five pairs of electrons; the block therefore takes up ten columns in the periodic t"
[{2020-01-04} https://en.wikipedia.org/wiki/Block_(periodic_table)#d-block]
description::
"The f-block appears as a footnote in a standard 18-column table but is located at the center-left of a 32-column full width table. While these elements are generally not considered part of any group some authors consider them to be part of group 3. They are sometimes called inner transition metals because they provide a transition between the s-block and d-block in the 6th and 7th row (period), in the same way that the d-block transition metals provide a transitional bridge between the s-block and p-block in the 4th and 5th rows.
The f-block elements come in two series, in periods 6 and 7. All are metals. The f-orbital electrons are largely inactive in determining the chemistry of the period 6 f-block elements. Their chemical properties are mostly determined by a single d and two s-orbital electrons. Consequently, there is less chemical variability within this series of elements. Among the early period 7 f-block elements, the energies of the 5f, 7s and 6d shells are quite similar; consequently these elements tend to show as much chemical variability as their transition metals analogues. The later f-block elements behave more like their period 6 counterparts.
The f-block elements are unified by mostly having one or more electrons in an inner f-orbital. Of the f-orbitals, five have six lobes each, and the sixth looks like a dumbbell with a donut with two rings. They can contain up to seven pairs of electrons hence the block occupies fourteen columns in the periodic table. They are not assigned group numbers, since vertical periodic trends cannot be discerned in a "group" of two elements.
The two 14-member rows of the f-block elements are sometimes confused with the lanthanides and the actinides, which are names for sets of elements based on chemical properties more so than electron configurations. The lanthanides are the 15 elements running from La to Lu; the actinides are the 15 elements running from Ac to Lr."
[{2020-01-04} https://en.wikipedia.org/wiki/Block_(periodic_table)#f-block]
description::
"The p-block is on the right side of the standard periodic table and encompasses elements in groups 13 to 18. Their general electronic configuration is ns2 np1–6. Helium, though being the first element in group 18, is not included in the p-block. Each row of the table has a place for six p-elements except for the first row (which has none).
This block is the only one having all three types of elements: metals, nonmetals, and metalloids. The p-block elements can be described on a group-by-group basis as: group 13, the icosagens; 14, the crystallogens; 15, the pnictogens; 16, the chalcogens; 17, the halogens; and 18, the helium group, composed of the noble gases and oganesson. Alternatively, the p-block can be described as containing post-transition metals; metalloids; reactive nonmetals including the halogens; and noble gases.
The p-block elements are unified by the fact that their valence (outermost) electrons are in the p orbital. The p orbital consists of six lobed shapes coming from a central point at evenly spaced angles. The p orbital can hold a maximum of six electrons, hence there are six columns in the p-block. Elements in column 13, the first column of the p-block, have one p-orbital electron. Elements in column 14, the second column of the p-block, have two p-orbital electrons. The trend continues this way until column 18, which has six p-orbital electrons.
The block is a stronghold of the octet rule, especially in groups 14–17. The p-block elements show variable oxidation states usually differing by multiples of two. The reactivity of elements in a group generally decreases downwards. This is not case in group 18, where reactivity increases in the following sequence: Ne < He < Ar < Kr < Xe < Rn < Og.
The corrosive nonmetals of the p-block (F, Cl, Br, and I) tend to form ionic compounds with metals; the remaining reactive nonmetals tend to form covalent compounds. The metalloids (B, Si, Ge, As, Sb, and At) tend to form either covalent compounds or alloys with metals."
[{2020-01-04} https://en.wikipedia.org/wiki/Block_(periodic_table)#p-block]
description::
"The s-block is on the left side of the conventional periodic table and is composed of elements from the first two columns, the nonmetals hydrogen and helium and the alkali metals (in group 1) and alkaline earth metals (group 2). Their general valence configuration is ns1–2. Helium is an s-element, but nearly always finds its place to the far right in group 18, above the p-element neon. Each row of the table has two s-elements.
The metals of the s-block (from the second row onwards) are mostly soft and have generally low melting and boiling points. Most impart colour to a flame.
Chemically, all s-elements except helium are highly reactive. Metals of the s-block form ionic compounds with the halogen nonmetals in group 17."
[{2020-01-04} https://en.wikipedia.org/wiki/Block_(periodic_table)#s-block]
description::
The alkali metals are a group of chemical elements in the periodic table with very similar properties: they are all shiny, soft, silvery, highly reactive metals at standard temperature and pressure[1] and readily lose their outermost electron to form cations with charge +1.[2]:28 They can all be cut easily with a knife due to their softness, exposing a shiny surface that tarnishes rapidly in air due to oxidation.[1] In the modern IUPAC nomenclature, the alkali metals comprise the group 1 elements,[note 1] excluding hydrogen (H), which is nominally a group 1 element[4][5] but not normally considered to be an alkali metal[6][7] as it rarely exhibits behaviour comparable to that of the alkali metals.[8] All the alkali metals react with water, with the heavier alkali metals reacting more vigorously than the lighter ones.[1][9]
The alkali metals are lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr).[4] This group lies in the s-block of the periodic table[10] as all alkali metals have their outermost electron in an s-orbital.[1][11][12] The alkali metals provide the best example of group trends in properties in the periodic table,[1] with elements exhibiting well-characterized homologous behaviour.[1]
All the discovered alkali metals occur in nature.[13][14] Experiments have been conducted to attempt the synthesis of ununennium (Uue), which is likely to be the next member of the group, but they have all met with failure.[15] However, ununennium may not be an alkali metal due to relativistic effects, which are predicted to have a large influence on the chemical properties of superheavy elements.[16]
Most alkali metals have many different applications. Two of the most well-known applications of the pure elements are rubidium and caesium atomic clocks,[17] of which caesium atomic clocks are the most accurate representation of time known as of 2012.[18][19] A common application of the compounds of sodium is the sodium vapour lamp, which emits very efficient light.[20][21] Table salt, or sodium chloride, has been used since antiquity.
[http://en.wikipedia.org/wiki/Alkali-metal]
name::
* McsEngl.chmElry.IA,
* McsEngl.chmElry.alkali-metal,
* McsEngl.chmElry.group1,
specific::
* Caesium-(Cs),
* Francium-(Fr),
* Lithium-(Li),
* Potassium-(K),
* Rubidium-(Rb),
* Sodium-(Na),
description::
"The alkaline earth metals are a group of chemical elements in the periodic table with very similar properties: they are all shiny, silvery-white, somewhat reactive metals at standard temperature and pressure[1] and readily lose their two outermost electrons to form cations with charge +2.[2] In the modern IUPAC nomenclature, the alkaline earth metals comprise the group 2 elements.[note 1]
The alkaline earth metals are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).[4] This group lies in the s-block of the periodic table as all alkaline earth metals have their outermost electron in an s-orbital.[1][5][6]
All the discovered alkaline earth metals occur in nature.[7] Experiments have been conducted to attempt the synthesis of unbinilium (Ubn), which is likely to be the next member of the group, but they have all met with failure. However, unbinilium may not be an alkaline earth metal due to relativistic effects, which are predicted to have a large influence on the chemical properties of superheavy elements.[8]"
[http://en.wikipedia.org/wiki/Alkaline-earth-metal]
name::
* McsEngl.chmElry.IIA,
* McsEngl.chmElry.alkaline-earth-metal,
* McsEngl.chmElry.group2,
description::
"The group 3 elements are a group of chemical elements in the periodic table. This group, like other d-block groups, should contain four elements, but it is not agreed what elements belong in the group. Scandium (Sc) and yttrium (Y) are always included, but the other two spaces are usually occupied by lanthanum (La) and actinium (Ac), or by lutetium (Lu) and lawrencium (Lr); less frequently, it is considered the group should be expanded to 32 elements (with all the lanthanides and actinides included) or contracted to contain only scandium and yttrium. The group itself has not acquired a trivial name; however, scandium, yttrium and the lanthanides are sometimes called rare earth metals.
Three group 3 elements occur naturally, scandium, yttrium, and either lanthanum or lutetium. Lanthanum continues the trend started by two lighter members in general chemical behavior, while lutetium behaves more similarly to yttrium. This is in accordance with the trend for period 6 transition metals to behave more similarly to their upper periodic table neighbors. This trend is seen from hafnium, which is almost identical chemically to zirconium, to mercury, which is quite distant chemically from cadmium, but still shares with it almost equal atomic size and other similar properties. They all are silvery-white metals under standard conditions. The fourth element, either actinium or lawrencium, has only radioactive isotopes. Actinium, which occurs only in trace amounts, continues the trend in chemical behavior for metals that form tripositive ions with a noble gas configuration; synthetic lawrencium is calculated and partially shown to be more similar to lutetium and yttrium. So far, no experiments have been conducted to synthesize any element that could be the next group 3 element. Unbiunium (Ubu), which could be considered a group 3 element if preceded by lanthanum and actinium, might be synthesized in the near future, it being only three spaces away from the current heaviest element known, ununoctium."
[http://en.wikipedia.org/wiki/Group-3-element]
description::
"The Group 4 elements are a group of chemical elements in the periodic table. In the modern IUPAC nomenclature, Group 4 of the periodic table contains titanium (Ti), zirconium (Zr), hafnium (Hf) and rutherfordium (Rf). This group lies in the d-block of the periodic table. The group itself has not acquired a trivial name; it belongs to the broader grouping of the transition metals.
The three Group 4 elements that occur naturally are titanium (Ti), zirconium (Zr) and hafnium (Hf). The first three members of the group share similar properties; all three are hard refractory metals under standard conditions. However, the fourth element rutherfordium (Rf), has been synthesized in the laboratory; none of its isotopes have been found occurring in nature. All isotopes of rutherfordium are radioactive. So far, no experiments in a supercollider have been conducted to synthesize the next member of the group, either unpentquadium (Upq) or unpenthexium (Uph), and it is unlikely that they will be synthesized in the near future."
[http://en.wikipedia.org/wiki/Group-4-element]
description::
"A Group 5 element is a chemical element in the fifth group in the periodic table. In the modern IUPAC nomenclature, Group 5 of the periodic table contains vanadium (V), niobium (Nb), tantalum (Ta) and dubnium (Db). This group lies in the d-block of the periodic table. The group itself has not acquired a trivial name; it belongs to the broader grouping of the transition metals.
The lighter three Group 5 elements occur naturally and do share similar properties; all three are hard refractory metals under standard conditions. The fourth element, dubnium, has been synthesized in the laboratory, but it has not been found occurring in nature, with half-life of the most stable isotope, dubnium-268, being only 28 hours, and other isotopes even more radioactive. To date, no experiments in a supercollider have been conducted to synthesize the next member of the group, either unpentpentium (Upp) or unpentseptium (Ups). As unpentpentium and unpentseptium are both late period 8 elements it is unlikely that these elements will be synthesized in the near future."
[http://en.wikipedia.org/wiki/Group-5-element]
description::
"A Group 6 element is one in the series of elements in group 6 (IUPAC style) in the periodic table, which consists of the transition metals chromium (Cr), molybdenum (Mo), tungsten (W), and seaborgium (Sg).
Like other groups, the members of this family show patterns in its electron configuration, especially the outermost shells resulting in trends in chemical behavior:
Z Element No. of electrons/shell
24 chromium 2, 8, 13, 1
42 molybdenum 2, 8, 18, 13, 1
74 tungsten 2, 8, 18, 32, 12, 2
106 seaborgium 2, 8, 18, 32, 32, 12, 2
"Group 6" is the new IUPAC name for this group; the old style name was "group VIA" in the old European system or "group VIB" in the old US system. Group 6 must not be confused with the group with the old-style group names of either VIB (European system) or VIA (US system); that group is now called group 16."
[http://en.wikipedia.org/wiki/Group-6-element]
description::
"A Group 7 element is one in the series of elements in group 7 (IUPAC style) in the periodic table, which consists of manganese (Mn), technetium (Tc), rhenium (Re), and bohrium (Bh). All known elements of group 7 are transition metals.
Like other groups, the members of this family show patterns in their electron configurations, especially the outermost shells resulting in trends in chemical behavior."
[http://en.wikipedia.org/wiki/Group-7-element]
description::
"A Group 8 element is one in the series of elements in group 8 (IUPAC style) in the periodic table, which consists of the transition metals iron (Fe), ruthenium (Ru), osmium (Os) and hassium (Hs).
Like other groups, the members of this family show patterns in its electron configuration, especially the outermost shells resulting in trends in chemical behavior.
"Group 8" is the new IUPAC name for this group; the old style name was "group VIIIA" in the old European system or "group VIIIB" in the old US system. Group 8 must not be confused with the group with the old-style group names of either VIIIB (European system) or VIIIA (US system); that group is now called group 18."
[http://en.wikipedia.org/wiki/Group-8-element]
name::
* McsEngl.chmElry.VIII,
* McsEngl.chmElry.VIIIB,
* McsEngl.chmElry.group8,
description::
"In modern IUPAC nomenclature, Group 9 of the periodic table contains the elements cobalt (Co), rhodium (Rh), iridium (Ir), and meitnerium (Mt). These are all d-block transition metals. All known isotopes of meitnerium are radioactive with short half-lives, and it is not known to occur in nature; only minute quantities have been synthesized in laboratories.
Like other groups, the members of this family show patterns in its electron configuration, especially the outermost shells resulting in trends in chemical behavior, though rhodium curiously does not follow the pattern:"
[http://en.wikipedia.org/wiki/Group-9-element]
name::
* McsEngl.chmElry.VIII,
* McsEngl.chmElry.VIIIB,
* McsEngl.chmElry.group9,
description::
"A Group 10 element is one in the series of elements in group 10 (IUPAC style) in the periodic table, which consists of the d-block transition metals nickel (Ni), palladium (Pd), platinum (Pt), and darmstadtium (Ds). All known isotopes of Ds are radioactive with short half-lives, and it is not known to occur in nature; only minute quantities have been synthesized in laboratories.
Like other groups, the members of this family show patterns in its electron configuration, especially the outermost shells (though for this family it is particularly weak with palladium being an exceptional case). The relativistic stabilization of the 7s orbital is the explanation to the unusual electron configuration of darmstadtium."
[http://en.wikipedia.org/wiki/Group-10-element]
name::
* McsEngl.chmElry.VIII,
* McsEngl.chmElry.VIIIB,
* McsEngl.chmElry.group10,
description::
"A Group 11 element is one in the series of elements in group 11 (IUPAC style) in the periodic table, consisting of transition metals copper (Cu), silver (Ag), and gold (Au). Roentgenium (Rg) belongs to this group of elements based on its theoretical electronic configuration, but it is a short-lived transactinide with a 22.8 seconds half-life that has only been observed in laboratory conditions. Although at various times societies have used other metals in coinage including aluminium, lead, nickel, stainless steel, tin, and zinc, the name "coinage metals" is used to highlight the special physio-chemical properties that make this series of metals uniquely well suited for monetary purposes. These properties include ease of identification, resistance to tarnish, extreme difficulty in counterfeiting, durability, fungibility and a reliable store of value unmatched by any other metals known."
[http://en.wikipedia.org/wiki/Group-11-element]
description::
"A group 12 element is one of the elements in group 12 (IUPAC style)[note 1] in the periodic table. This includes zinc (Zn), cadmium (Cd) and mercury (Hg).[2][3][4] The further inclusion of copernicium (Cn) in group 12 is supported by recent experiments on individual copernicium atoms.[5]
The three group 12 elements that occur naturally are zinc, cadmium and mercury. They are all widely used in electric and electronic applications, as well as in various alloys. The first two members of the group share similar properties as they are solid metals under standard conditions. Mercury is the only metal that is a liquid at room temperature. While zinc is very important in the biochemistry of living organisms, cadmium and mercury are both highly toxic. As copernicium does not occur in nature, it has to be synthesized in the laboratory."
[http://en.wikipedia.org/wiki/Group-12-element]
description::
"The boron group is the series of elements in group 13 (IUPAC style) of the periodic table, comprising boron (B), aluminium (Al), gallium (Ga), indium (In), thallium (Tl), and ununtrium (Uut). The elements in the boron group are characterized by having three electrons in their outer energy levels (valence layers).[1] These elements have also been referred to as earth metals and as triels.
Boron is classified as a metalloid while the rest, with the possible exception of ununtrium, are considered poor metals. Ununtrium has not yet been confirmed to be a poor metal and, due to relativistic effects, might not turn out to be one. Boron occurs sparsely, probably because bombardment by the subatomic particles produced from natural radioactivity disrupts its nuclei. Aluminium occurs widely on earth, and indeed is the third most abundant element in the Earth's crust (8.3%).[2] Gallium is found in the earth with an abundance of 13 ppm. Indium is the 61st most abundant element in the earth's crust, and thallium is found in moderate amounts throughout the planet. Ununtrium is never found in nature and therefore is termed a synthetic element.
Several group-13 elements have biological roles in the ecosystem. Boron is a trace element in humans and is essential for some plants. Lack of boron can lead to stunted plant growth, while an excess can also cause harm by inhibiting growth. Aluminium has neither a biological role nor significant toxicity and is considered safe. Indium and gallium can stimulate metabolism; gallium is credited with the ability to bind itself to iron proteins. Thallium is highly toxic, interfering with the function of numerous vital enzymes, and has seen use as a pesticide.[3]"
[http://en.wikipedia.org/wiki/Boron-group]
name::
* McsEngl.chmElry.IIIA,
* McsEngl.chmElry.boron,
* McsEngl.chmElry.group13,
description::
"The carbon group is a periodic table group consisting of carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), and flerovium (Fl).
In modern IUPAC notation, it is called Group 14. In the old IUPAC and CAS systems, it was called Group IVB and Group IVA, respectively.[1] In the field of semiconductor physics, it is still universally called Group IV. The group was once also known as the tetrels (from Greek tetra, four), stemming from the Roman numeral IV in the group names, or (not coincidentally) from the fact that these elements have four valence electrons (see below)."
[http://en.wikipedia.org/wiki/Carbon-group]
name::
* McsEngl.chmElry.IVA,
* McsEngl.chmElry.carbon,
* McsEngl.chmElry.group14,
description::
"The nitrogen group is a periodic table group consisting of nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi) and ununpentium (Uup) (unconfirmed).
In modern IUPAC notation, it is called Group 15. In the old IUPAC and CAS systems, it was called Group VB and Group VA, respectively (pronounced "group five B" and "group five A", because "V" is a Roman numeral).[1] In the field of semiconductor physics, it is still universally called Group V.[2] It is also collectively named the pnictogens.[3] The "five" ("V") in the historical names comes from the "pentavalency" of nitrogen, reflected by the stoichiometry of compounds such as N2O5."
[http://en.wikipedia.org/wiki/Nitrogen-group]
name::
* McsEngl.chmElry.VA,
* McsEngl.chmElry.nitrogen,
* McsEngl.chmElry.group15,
description::
"The chalcogens (/ˈkælkədʒɪnz/) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. It consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive element polonium (Po). The chemically uncharacterized synthetic element livermorium (Lv) is predicted to be a chalcogen as well.[1] Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word khalkόs (χαλκός) principally meaning copper (the term was also used for bronze/brass, any metal in the poetic sense, ore or coin),[2] and the Latinised Greek word genēs, meaning born or produced.[3][4]
Sulfur has been known since antiquity, and oxygen was recognized as an element in the 18th century. Selenium, tellurium and polonium were discovered in the 19th century, and livermorium in 2000. All of the chalcogens have six valence electrons, leaving them two electrons short of a full outer shell. Their most common oxidation states are −2, +2, +4, and +6. They have relatively low atomic radii, especially the lighter ones.[5]
Lighter chalcogens are typically nontoxic in their elemental form, and are often critical to life, while the heavier chalcogens are typically toxic.[1] All of the chalcogens have some role in biological functions, either as a nutrient or a toxin. Selenium is an important nutrient but is also commonly toxic.[6] Tellurium often has unpleasant effects (although some organisms can use it), and polonium is always extremely harmful, both in its chemical toxicity and its radioactivity.
Sulfur has more than 20 allotropes, oxygen has nine, selenium has at least five, polonium has two, and only one crystal structure of tellurium has so far been discovered. There are numerous organic chalcogen compounds. Not counting oxygen, organic sulfur compounds are generally the most common, followed by organic selenium compounds and organic tellurium compounds. This trend also occurs with chalcogen pnictides and compounds containing chalcogens and carbon group elements.
Oxygen is generally obtained by separation of air into nitrogen and oxygen. Sulfur is extracted from oil and natural gas. Selenium and tellurium are produced as byproducts of copper refining. Polonium and livermorium are most available in particle accelerators. The primary use of elemental oxygen is in steelmaking. Sulfur is mostly converted into sulfuric acid, which is heavily used in the chemical industry.[6] Selenium's most common application is glassmaking. Tellurium compounds are mostly used in optical disks, electronic devices, and solar cells. Some of polonium's applications are due to its radioactivity.[1]"
[http://en.wikipedia.org/wiki/Chalcogen {2020-01-04}]
description::
"The halogens or halogen elements are a series of nonmetal elements from Group 17 IUPAC Style (formerly: VII, VIIA) of the periodic table, comprising fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At). The artificially created element 117, provisionally referred to by the systematic name ununseptium, may also be a halogen.
The group of halogens is the only periodic table group which contains elements in all three familiar states of matter at standard temperature and pressure."
[http://en.wikipedia.org/wiki/Halogen]
name::
* McsEngl.chmElry.VIIA,
* McsEngl.chmElry.group17,
* McsEngl.chmElry.halogen,
specific::
* Astatine-(At),
* Bromine-(Br),
* Chlorine-(Cl),
* Fluorine-(F),
* Iodine-(I),
* Ununseptium-(117),
description::
"The noble gases are a group of chemical elements with very similar properties: under standard conditions, they are all odorless, colorless, monatomic gases, with very low chemical reactivity. The six noble gases that occur naturally are helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and the radioactive radon (Rn).
For the first six periods of the periodic table, the noble gases are exactly the members of group 18 of the periodic table. However, it is possible that due to relativistic effects, the group 14 element flerovium exhibits some noble-gas-like properties,[1] instead of the group 18 element ununoctium.[2]
The properties of the noble gases can be well explained by modern theories of atomic structure: their outer shell of valence electrons is considered to be "full", giving them little tendency to participate in chemical reactions, and it has only been possible to prepare a few hundred noble gas compounds. The melting and boiling points for each noble gas are close together, differing by less than 10 °C (18 °F); that is, they are liquids over only a small temperature range.
Neon, argon, krypton, and xenon are obtained from air using the methods of liquefaction of gases and fractional distillation. Helium is typically separated from natural gas, and radon is usually isolated from the radioactive decay of dissolved radium compounds. Noble gases have several important applications in industries such as lighting, welding, and space exploration. A helium-oxygen breathing gas is often used by deep-sea divers at depths of seawater over 55 m (180 ft) to keep the diver from experiencing oxygen toxemia, the lethal effect of high-pressure oxygen, and nitrogen narcosis, the distracting narcotic effect of the nitrogen in air beyond this partial-pressure threshold. After the risks caused by the flammability of hydrogen became apparent, it was replaced with helium in blimps and balloons."
[http://en.wikipedia.org/wiki/Noble-gas]
name::
* McsEngl.chmElry.VIIIA,
* McsEngl.chmElry.group18,
* McsEngl.chmElry.noble-gas,
description::
"H1, He2,
The first period contains the least elements than any other, with only two, hydrogen and helium. They therefore do not follow the octet rule. Chemically, helium behaves like a noble gas, and thus is taken to be part of the group 18 elements. However, in terms of its nuclear structure it belongs to the s block, and is therefore sometimes classified as a group 2 element, or simultaneously both 2 and 18. Hydrogen readily loses and gains an electron, and so behaves chemically as both a group 1 and a group 17 element.
Hydrogen (H) is the most abundant of the chemical elements, constituting roughly 75% of the universe's elemental mass.[1] Ionized hydrogen is just a proton. Stars in the main sequence are mainly composed of hydrogen in its plasma state. Elemental hydrogen is relatively rare on Earth, and is industrially produced from hydrocarbons such as methane. Hydrogen can form compounds with most elements and is present in water and most organic compounds.[2]
Helium (He) exists only as a gas except in extreme conditions.[3] It is the second-lightest element and is the second-most abundant in the universe.[4] Most helium was formed during the Big Bang, but new helium is created through nuclear fusion of hydrogen in stars.[5] On Earth, helium is relatively rare, only occurring as a byproduct of the natural decay of some radioactive elements.[6] Such 'radiogenic' helium is trapped within natural gas in concentrations of up to seven percent by volume.[7]"
[{2020-01-05} https://en.wikipedia.org/wiki/Period_(periodic_table)#Period_1]
description::
"Li3, Be4, B5, C6, N7, O8, F9, Ne10,
Period 2 elements involve the 2s and 2p orbitals. They include the biologically most essential elements besides hydrogen: carbon, nitrogen, and oxygen.
Lithium (Li) is the lightest metal and the least dense solid element.[8] In its non-ionized state it is one of the most reactive elements, and so is only ever found naturally in compounds. It is the heaviest primordial element forged in large quantities during the Big Bang.
Beryllium (Be) has one of the highest melting points of all the light metals. Small amounts of beryllium were synthesised during the Big Bang, although most of it decayed or reacted further within stars to create larger nuclei, like carbon, nitrogen or oxygen. Beryllium is classified by the International Agency for Research on Cancer as a group 1 carcinogen.[9] Between 1% and 15% of people are sensitive to beryllium and may develop an inflammatory reaction in their respiratory system and skin, called chronic beryllium disease.[10]
Boron (B) does not occur naturally as a free element, but in compounds such as borates. It is an essential plant micronutrient, required for cell wall strength and development, cell division, seed and fruit development, sugar transport and hormone development,[11][12] though high levels are toxic.
Carbon (C) is the fourth-most abundant element in the universe by mass after hydrogen, helium and oxygen[13] and is the second-most abundant element in the human body by mass after oxygen,[14] the third-most abundant by number of atoms.[15] There are an almost infinite number of compounds that contain carbon due to carbon's ability to form long stable chains of C—C bonds.[16][17] All organic compounds, those essential for life, contain at least one atom of carbon;[16][17] combined with hydrogen, oxygen, nitrogen, sulfur, and phosphorus, carbon is the basis of every important biological compound.[17]
Nitrogen (N) is found mainly as mostly inert diatomic gas, N2, which makes up 78% of the Earth's atmosphere by volume. It is an essential component of proteins and therefore of life.
Oxygen (O) comprising 21% of the atmosphere by volume and is required for respiration by all (or nearly all) animals, as well as being the principal component of water. Oxygen is the third-most abundant element in the universe, and oxygen compounds dominate the Earth's crust.
Fluorine (F) is the most reactive element in its non-ionized state, and so is never found that way in nature.
Neon (Ne) is a noble gas used in neon lighting."
[{2020-01-05} https://en.wikipedia.org/wiki/Period_(periodic_table)#Period_2]
description::
"Na11, Mg12, Al13, Si14, P15, S16, Cl17, Ar18,
All period three elements occur in nature and have at least one stable isotope. All but the noble gas argon are essential to basic geology and biology.
Sodium (Na) is an alkali metal. It is present in Earth's oceans in large quantities in the form of sodium chloride (table salt).
Magnesium (Mg) is an alkaline earth metal. Magnesium ions are found in chlorophyll.
Aluminium (Al) is a post-transition metal. It is the most abundant metal in the Earth's crust.
Silicon (Si) is a metalloid. It is a semiconductor, making it the principal component in many integrated circuits. Silicon dioxide is the principal constituent of sand. As Carbon is to Biology, Silicon is to Geology.
Phosphorus (P) is a nonmetal essential to DNA. It is highly reactive, and as such is never found in nature as a free element.
Sulfur (S) is a nonmetal. It is found in two amino acids: cysteine and methionine.
Chlorine (Cl) is a halogen. It is used as a disinfectant, especially in swimming pools.
Argon (Ar) is a noble gas, making it almost entirely nonreactive. Incandescent lamps are often filled with noble gases such as argon in order to preserve the filaments at high temperatures."
[{2020-01-05} https://en.wikipedia.org/wiki/Period_(periodic_table)#Period_3]
description::
"K19, Ca20, Sc21, Ti22, V23, Cr24, Mn25, Fe26, Co27, Ni28, Cu29, Zn30, Ga31, Ge32, As33, Se34, Br35, Kr36,
Period 4 includes the biologically essential elements potassium and calcium, and is the first period in the d-block with the lighter transition metals. These include iron, the heaviest element forged in main-sequence stars and a principal component of the Earth, as well as other important metals such as cobalt, nickel, and copper. Almost all have biological roles.
Completing the fourth period are the post-transition metals zinc and gallium, the metalloids germanium and arsenic, and the nonmetals selenium, bromine, and krypton."
[{2020-01-05} https://en.wikipedia.org/wiki/Period_(periodic_table)#Period_4]
description::
"Rb37, Sr38, Y39, Zr40, Nb41, Mo42, Tc43, Ru44, Rh45, Pd46, Ag47, Cd48, In49, Sn50, Sb51, Te52, I53, Xe54,
Period 5 has the same number of elements as period 4 and follows the same general structure but with one more post transition metal and one fewer nonmetal. Of the three heaviest elements with biological roles, two (molybdenum and iodine) are in this period; tungsten, in period 6, is heavier, along with several of the early lanthanides. Period 5 also includes technetium, the lightest exclusively radioactive element."
[{2020-01-05} https://en.wikipedia.org/wiki/Period_(periodic_table)#Period_5]
description::
"Cs55, Ba56, La57, Ce58, Pr59, Nd60, Pm61, Sm62, Eu63, Gd64, Tb65, Dy66, Ho67, Er68, Tm69, Yb70, Lu71, Hf72, Ta73, W74, Re75, Os76, Ir77, Pt78, Au79, Hg80, Tl81, Pb82, Bi83, Po84, At85, Rn86,
Period 6 is the first period to include the f-block, with the lanthanides (also known as the rare earth elements), and includes the heaviest stable elements. Many of these heavy metals are toxic and some are radioactive, but platinum and gold are largely inert."
[{2020-01-05} https://en.wikipedia.org/wiki/Period_(periodic_table)#Period_6]
description::
"Fr87, Ra88, Ac89, Th90, Pa91, U92, Np93, Pu94, Am95, Cm96, Bk97, Cf98, Es99, Fm100, Md101, No102, Lr103, Rf104, Db105, Sg106, Bh107, Hs108, Mt109, Ds110, Rg111, Cn112, Nh113, Fl114, Mc115, Lv116, Ts117, Og118,
All elements of period 7 are radioactive. This period contains the heaviest element which occurs naturally on Earth, plutonium. All of the subsequent elements in the period have been synthesized artificially. Whilst five of these (from americium to einsteinium) are now available in macroscopic quantities, most are extremely rare, having only been prepared in microgram amounts or less. Some of the later elements have only ever been identified in laboratories in quantities of a few atoms at a time.
Although the rarity of many of these elements means that experimental results are not very extensive, periodic and group trends in behaviour appear to be less well defined for period 7 than for other periods. Whilst francium and radium do show typical properties of groups 1 and 2, respectively, the actinides display a much greater variety of behaviour and oxidation states than the lanthanides. These peculiarities of period 7 may be due to a variety of factors, including a large degree of spin-orbit coupling and relativistic effects, ultimately caused by the very high positive electrical charge from their massive atomic nuclei."
[{2020-01-05} https://en.wikipedia.org/wiki/Period_(periodic_table)#Period_7]
description::
Chemical elements are classified as metals and nonmetals. The atoms of metals are electropositive and combine readily with the electronegative atoms of the nonmetals.
"Elements, Chemical," Microsoft(R) Encarta(R) 97 Encyclopedia. (c) 1993-1996 Microsoft Corporation. All rights reserved.
description::
In chemistry, a nonmetal or non-metal is a chemical element which mostly lacks metallic attributes. Physically, nonmetals tend to be highly volatile (easily vaporised), have low elasticity, and are good insulators of heat and electricity; chemically, they tend to have high ionisation energy and electronegativity values, and gain or share electrons when they react with other elements or compounds. Seventeen elements are generally classified as nonmetals; most are gases (hydrogen, helium, nitrogen, oxygen, fluorine, neon, chlorine, argon, krypton, xenon and radon); one is a liquid (bromine); and a few are solids (carbon, phosphorus, sulfur, selenium, and iodine).
Moving rightward across the standard form of periodic table, nonmetals adopt structures that have progressively fewer nearest neighbours. Polyatomic nonmetals have structures with either three nearest neighbours, as is the case (for example) with carbon (in its standard state[n 1] of graphite), or two nearest neighbours (for example) in the case of sulfur. Diatomic metals, such as hydrogen, have one nearest neighbour, and the monatomic noble gases, such as helium, have none. This gradual fall in the number of nearest neighbours is associated with a reduction in metallic character and an increase in nonmetallic character. The distinction between the three categories of nonmetals, in terms of receding metallicity is not absolute. Boundary overlaps occur as outlying elements in each category show (or begin to show) less-distinct, hybrid-like or atypical properties.
Although five times more elements are metals than nonmetals, two of the nonmetals—hydrogen and helium—make up over 99 per cent of the observable Universe,[4] and one—oxygen—makes up close to half of the Earth's crust, oceans and atmosphere.[5] Living organisms are also composed almost entirely of nonmetals,[6] and nonmetals form many more compounds than metals.[7]
[http://en.wikipedia.org/wiki/Non-metal]
name::
* McsEngl.chmElry.metalNo,
* McsEngl.nonmetal-chmElry,
_SPECIFIC:
1 Hydrogen H 1 1 s Gas Primordial Non-metal
6 Carbon C 14 2 p Solid Primordial Non-metal
7 Nitrogen N 15 2 p Gas Primordial Non-metal
8 Oxygen O 16 2 p Gas Primordial Non-metal
15 Phosphorus P 15 3 p Solid Primordial Non-metal
16 Sulfur S 16 3 p Solid Primordial Non-metal
34 Selenium Se 16 4 p Solid Primordial Non-metal
[http://en.wikipedia.org/wiki/Chemical_element]
description::
At a conceptual level, metalloids are usually regarded as a third category of chemical elements alongside, and occupying a fuzzy 'buffer zone' between, those of metals and nonmetals.[5][n 2] At a practical level, there is no universally agreed, rigorous definition of a metalloid.[10] The feasibility of establishing a specific definition has also been questioned, noting anomalies that can be found in several such attempted constructs.[11] Classifying any particular element as a metalloid has been described as 'arbitrary'.[12]
[http://en.wikipedia.org/wiki/Metalloid#Definition] 2014-01-05,
name::
* McsEngl.chmElry.metalloid,
* McsEngl.metalloid-chmElry,
_SPECIFIC:
5 Boron B 13 2 p Solid Primordial Metalloid
14 Silicon Si 14 3 p Solid Primordial Metalloid
32 Germanium Ge 14 4 p Solid Primordial Metalloid
33 Arsenic As 15 4 p Solid Primordial Metalloid
51 Antimony Sb 15 5 p Solid Primordial Metalloid
52 Tellurium Te 16 5 p Solid Primordial Metalloid
[http://en.wikipedia.org/wiki/Chemical_element]
description::
Allotropy or allotropism is the property of some chemical elements to exist in two or more different forms, known as allotropes of these elements. Allotropes are different structural modifications of an element;[1] the atoms of the element are bonded together in a different manner.
For example, the allotropes of carbon include diamond (where the carbon atoms are bonded together in a tetrahedral lattice arrangement), graphite (where the carbon atoms are bonded together in sheets of a hexagonal lattice), graphene (single sheets of graphite), and fullerenes (where the carbon atoms are bonded together in spherical, tubular, or ellipsoidal formations).
The term allotropy is used for elements only, not for compounds. The more general term, used for any crystalline material, is polymorphism. Allotropy refers only to different forms of an element within the same phase (i.e. different solid, liquid or gas forms); the changes of state between solid, liquid and gas in themselves are not considered allotropy.
For some elements, allotropes have different molecular formulae which can persist in different phases – for example, two allotropes of oxygen (dioxygen, O2 and ozone, O3), can both exist in the solid, liquid and gaseous states. Conversely, some elements do not maintain distinct allotropes in different phases – for example phosphorus has numerous solid allotropes, which all revert to the same P4 form when melted to the liquid state.
[http://en.wikipedia.org/wiki/Allotropy]
description::
Dietary elements (commonly known as dietary minerals or mineral nutrients) are the chemical elements required by living organisms, other than the four elements carbon, hydrogen, nitrogen, and oxygen present in common organic molecules. The term "dietary mineral" is archaic, as it describes chemical elements rather than actual minerals.
Chemical elements in order of abundance in the human body include the seven major dietary elements calcium, phosphorus, potassium, sulfur, sodium, chlorine, and magnesium. Important "trace" or minor dietary elements, necessary for mammalian life, include iron, cobalt, copper, zinc, molybdenum, iodine, and selenium (see below for detailed discussion).
Over twenty dietary elements are necessary for mammals, and several more for various other types of life. The total number of chemical elements that are absolutely needed is not known for any organism. Ultratrace amounts of some elements (e.g., boron, chromium) are known to clearly have a role but the exact biochemical nature is unknown, and others (e.g. arsenic, silicon) are suspected to have a role in health, but without proof.
Most chemical element that enter into the dietary physiology of organisms are in the form of simple compounds. Larger chemical compound of elements need to be broken down for absorption. Plants absorb dissolved elements in soils, which are subsequently picked up by the herbivores that eat them and so on, the elements move up the food chain. Larger organisms may also consume soil (geophagia) and visit salt licks to obtain limiting dietary elements they are unable to acquire through other components of their diet.
Bacteria play an essential role in the weathering of primary elements that results in the release of nutrients for their own nutrition and for the nutrition of others in the ecological food chain. One element, cobalt, is available for use by animals only after having been processed into complicated molecules (e.g., vitamin B12), by bacteria. Scientists are only recently starting to appreciate the magnitude and role that microorganisms have in the global cycling and formation of biominerals.
[http://en.wikipedia.org/wiki/Dietary_mineral]
description::
"Isotopes are variants of a particular chemical element which differ in neutron number, and consequently in nucleon number. All isotopes of a given element have the same number of protons but different numbers of neutrons in each atom.[1]
The term isotope is formed from the Greek roots isos (ἴσος "equal") and topos (τόπος "place"), meaning "the same place"; thus, the meaning behind the name is that different isotopes of a single element occupy the same position on the periodic table.[2] It was coined by a Scottish doctor and writer Margaret Todd in 1913 in a suggestion to chemist Frederick Soddy.
The number of protons within the atom's nucleus is called atomic number and is equal to the number of electrons in the neutral (non-ionized) atom. Each atomic number identifies a specific element, but not the isotope; an atom of a given element may have a wide range in its number of neutrons. The number of nucleons (both protons and neutrons) in the nucleus is the atom's mass number, and each isotope of a given element has a different mass number.
For example, carbon-12, carbon-13, and carbon-14 are three isotopes of the element carbon with mass numbers 12, 13, and 14, respectively. The atomic number of carbon is 6, which means that every carbon atom has 6 protons, so that the neutron numbers of these isotopes are 6, 7, and 8 respectively."
[{2020-01-05} https://en.wikipedia.org/wiki/Isotope]
name::
* McsEngl.chmElry.isotope, /áizotop/
* McsEngl.isotope-chmElry,
description::
"An isotope and/or nuclide is specified by the name of the particular element (this indicates the atomic number) followed by a hyphen and the mass number (e.g. helium-3, helium-4, carbon-12, carbon-14, uranium-235 and uranium-239).[7]
When a chemical symbol is used, e.g. "C" for carbon, standard notation (now known as "AZE notation" because A is the mass number, Z the atomic number, and E for element) is to indicate the mass number (number of nucleons) with a superscript at the upper left of the chemical symbol and to indicate the atomic number with a subscript at the lower left (e.g.
,
,
...).[8]
Because the atomic number is given by the element symbol, it is common to state only the mass number in the superscript and leave out the atomic number subscript (e.g. 3He, 4He, 12C, 14C, 235U, and 239U).
The letter m is sometimes appended after the mass number to indicate a nuclear isomer, a metastable or energetically-excited nuclear state (as opposed to the lowest-energy ground state), for example
(tantalum-180m).
The common pronunciation of the AZE notation is different from how it is written:
,
is commonly pronounced as helium-four instead of four-two-helium, and
,
as uranium two-thirty-five (American English) or uranium-two-three-five (British) instead of 235-92-uranium."
[{2020-01-05} https://en.wikipedia.org/wiki/Isotope#Notation]
name::
* McsEngl.chmElrIsotope'AZE-notation,
* McsEngl.chmElrIsotope'notation,
name::
* McsEngl.chmElry.radioactive,
====== langoGreek:
* McsElln.ραδιενεργό_στοιxείο,
description::
Although several of these, the so-called transuranic elements, have not been found in nature, they have been produced artificially by bombarding the atomic nuclei of other elements with charged nuclei or nuclear particles. Such bombardment can take place in a particle accelerator such as the cyclotron, in a nuclear reactor, or in a nuclear explosion.
"Elements, Chemical," Microsoft(R) Encarta(R) 97 Encyclopedia. (c) 1993-1996 Microsoft Corporation. All rights reserved.
name::
* McsEngl.chmElry.transuranic,
* McsEngl.transuranic-chmElry,
this webpage was-visited times since {2019-12-29}
page-wholepath: synagonism.net / worldviewSngo / dirNtr / chmElry
SEARCH::
· this page uses 'locator-names', names that when you find them, you find the-LOCATION of the-concept they denote.
⊛ GLOBAL-SEARCH:
· clicking on the-green-BAR of a-page you have access to the-global--locator-names of my-site.
· use the-prefix 'chmElry' for sensorial-concepts related to current concept 'chemical-element'.
⊛ LOCAL-SEARCH:
· TYPE CTRL+F "McsLag4.words-of-concept's-name", to go to the-LOCATION of the-concept.
· a-preview of the-description of a-global-name makes reading fast.
webpage-versions::
• version.last.dynamic: McsNtr000007.last.html,
• version.1-0-0.2021-04-14: (0-15) ../../dirMiwMcs/dirNtr/filMcsChmElr.1-0-0.2021-04-14.html,
• version.0-1-0.2019-12-29 draft creation,